机构地区:[1]Department of Cardiology,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology [2]Department of Cardiology,Wuhan Pu'ai Hospital,Tongji Medical College,Huazhong University of Science and Technology
出 处:《Journal of Huazhong University of Science and Technology(Medical Sciences)》2013年第4期511-519,共9页华中科技大学学报(医学英德文版)
基 金:supported by a grant from the National Natural Science Foundation of China(No.30470457)
摘 要:Summary: Angiogenic gene therapy and cell-based therapy for peripheral arterial disease (PAD) have been studied intensively currently. This study aimed to investigate whether combining mesenchymal stem cells (MSCs)transplantation with ex vivo human hepatocyte growth factor (HGF) gene transfer was more therapeutically efficient than the MSCs therapy alone in a rat model of hindlimb ischemia. One week after establishing hindlimb ischemia models, Sprague-Dawley (SD) rats were randomized to receive HGF gene-modified MSCs transplantation (HGF-MSC group), untreated MSCs transplantation (MSC group), or PBS injection (PBS group), respectively. Three weeks after injection, angiogenesis was significantly induced by both MSCs and HGF-MSCs transplantation, and capillary density was the highest in the HGF-MSC group. The number of transplanted cell-derived endothelial cells was greater in HGF-MSC group than in MSC group after one week treatment. The expression of angiogenic cytokines such as HGF and VEGF in local ischemic muscles was more abundant in HGF-MSC group than in the other two groups. In vitro, the conditioned media obtained from HGF-MSCs cultures exerted proproliferative and promigratory effects on endothelial cells. It is concluded that HGF gene-modified MSCs transplantation therapy may induce more potent angiogenesis than the MSCs therapy alone. Engraftment of MSCs combined with angiogenic gene delivery may be a promising therapeutic strategy for the treatment of severe PAD.Summary: Angiogenic gene therapy and cell-based therapy for peripheral arterial disease (PAD) have been studied intensively currently. This study aimed to investigate whether combining mesenchymal stem cells (MSCs)transplantation with ex vivo human hepatocyte growth factor (HGF) gene transfer was more therapeutically efficient than the MSCs therapy alone in a rat model of hindlimb ischemia. One week after establishing hindlimb ischemia models, Sprague-Dawley (SD) rats were randomized to receive HGF gene-modified MSCs transplantation (HGF-MSC group), untreated MSCs transplantation (MSC group), or PBS injection (PBS group), respectively. Three weeks after injection, angiogenesis was significantly induced by both MSCs and HGF-MSCs transplantation, and capillary density was the highest in the HGF-MSC group. The number of transplanted cell-derived endothelial cells was greater in HGF-MSC group than in MSC group after one week treatment. The expression of angiogenic cytokines such as HGF and VEGF in local ischemic muscles was more abundant in HGF-MSC group than in the other two groups. In vitro, the conditioned media obtained from HGF-MSCs cultures exerted proproliferative and promigratory effects on endothelial cells. It is concluded that HGF gene-modified MSCs transplantation therapy may induce more potent angiogenesis than the MSCs therapy alone. Engraftment of MSCs combined with angiogenic gene delivery may be a promising therapeutic strategy for the treatment of severe PAD.
关 键 词:ANGIOGENESIS gene therapy hepatocyte growth factor mesenchymal stem cell peripheralarterial disease
分 类 号:R543[医药卫生—心血管疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...