伊乐藻-氮循环菌联用对太湖梅梁湾水体脱氮的研究  被引量:9

Denitrification Study of Elodea nuttallii-Nitrogen Cycling Bacteria Restoration in Meiliang Bay,Taihu Lake

在线阅读下载全文

作  者:赵琳[1] 李正魁[1] 周涛[1] 吴宁梅[1] 叶忠香[1] 刘丹丹[1] 

机构地区:[1]南京大学环境学院污染控制与资源化研究国家重点实验室,南京210023

出  处:《环境科学》2013年第8期3057-3063,共7页Environmental Science

基  金:江苏省自然科学基金重点项目(BK2010056);江苏省环境保护厅研究项目(201108);国家水体污染控制与治理科技重大专项(2012ZX07101-006;2013ZX07101-014)

摘  要:从太湖梅梁湾采集无扰动泥芯样,分别添加伊乐藻、固定化氮循环菌,模拟生态修复并探讨其机制.采用同位素配对技术测定了伊乐藻-氮循环菌技术对反硝化速率的影响.结果表明,伊乐藻与氮循环菌联合作用的试验柱的反硝化速率(以N计)最高,为104.64μmol·(m2·h)-1,与裸泥试验柱相比增加了150%.采用实时荧光定量PCR技术(RT-qPCR)对沉积物中反硝化菌功能基因nirS、nirK和nosZ进行定量研究,结果显示,反硝化菌的功能基因nirS和nosZ比对照裸泥组高出1~2个数量级,表明较高的微生物量促进了反硝化脱氮的能力.室内模拟实验还表明,沉水植物提高了耦合硝化反硝化的作用,氮循环菌提高了非耦合硝化反硝化的作用,沉水植物与微生物的联合作用提高了沉积物的总反硝化速率,促进了湖泊水体氮素的脱除,起到了净化作用.Undisturbed sediment cores were collected from Meiliang Bay,Taihu Lake,and the integrated Elodea nuttallii-nitrogen cycling bacteria technology was applied as a restoration method.The effects of the Elodea nuttallii-nitrogen cycling bacteria technology on sediment denitrification was observed by isotope pairing technique.The highest denitrification rate of 104.64 μmol·(m2·h)-1 was achieved in sediments with Elodea nuttallii-nitrogen cycling bacteria assemblage.The abundance of nirS,nirK and nosZ genes involved in denitrification processes in the sediments(within 2 cm below the water-sediment interface) were measured by real-time quantitative PCR(RT-qPCR).The abundance of nirS and nosZ genes in the sediments with restoration treatments was increased,which was more than one order of magnitudes higher than that in bare sediments.The results indicated that the presence of macrophyte and nitrogen cycling bacteria could increase benthic nitrogen removal by facilitating coupled nitrification-denitrification and uncoupled nitrification-denitrification.

关 键 词:伊乐藻-氮循环菌联用 反硝化 生态修复 同位素配对技术 RT-qPCR技术 

分 类 号:X172[环境科学与工程—环境科学] X524

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象