机构地区:[1]School of Mechanical Engineering & Automation, Northeastern University [2]School of Materials & Metallurgy, Northeastern University [3]Shenyang Aeroengine Research Institute
出 处:《Plasma Science and Technology》2013年第7期690-695,共6页等离子体科学和技术(英文版)
基 金:supported by China Postdoctoral Science Foundation Funded Project (Nos. 20100481209 and 201104569);a Grant (20120101220) from Liaoning Province of China;a Grant (F11-264-1-74) from Shenyang City of China;supported by the Fundamental Research Funds for the Central Universities, China (No. N110403002)
摘 要:In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced cheraical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp^2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp^3 content of the coatings.In this work, diamond-like-carbon (DLC) films were deposited onto polycarbonate (PC) substrates by radio-frequency plasma-enhanced cheraical vapor deposition (RF PECVD), and silicon films were prepared between DLC and PC substrates by magnetron sputtering deposition so as to improve the adhesion of the DLC films. The deposited films were investigated by means of field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Subsequently, the following frictional and optical properties of the films were measured: the friction coefficient by using a ball-on-disk tribometer, the scratch hardness by using a nano-indenter, the optical transmittance by using a UV/visible spectrometer. The effects of incident power upon the frictional and optical properties of the films were investigated. Films deposited at low incident powers showed large optical gaps, which decreased with increasing incident power. The optical properties of DLC films correlated to the sp^2 content of the coatings. High anti-scratch properties were obtained at higher values of incident power. The anti-scratch properties of DLC films correlated to the sp^3 content of the coatings.
关 键 词:diamond-like-carbon films PECVD MICROSTRUCTURE frictional and opticalproperties
分 类 号:TN304.055[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...