Turning in a Bipedal Robot  

Turning in a Bipedal Robot

在线阅读下载全文

作  者:Jau-Ching Lu Jing-Yi Chen Pei-Chun Lin 

机构地区:[1]Department of Mechanical Engineering, National Taiwan University, Taipei 106, Taiwan

出  处:《Journal of Bionic Engineering》2013年第3期292-304,共13页仿生工程学报(英文版)

摘  要:We report the development of turning behavior on a child-size bipedal robot that addresses two common scenarios: turning in place and simultaneous walking and turning. About turning in place, three strategies are investigated and compared, including body-first, leg-first, and body/leg-simultaneous, These three strategies are used for three actions, respectively: when walking follows turning immediately, when space behind the robot is very tight, and when a large turning angle is desired. Concerning simultaneous walking and turning, the linear inverted pendulum is used as the motion model in the single-leg support phase, and the polynomial-based trajectory is used as the motion model in the double-leg support phase and for smooth motion connectivity to motions in a priori and a posteriori single-leg support phases. Compared to the trajectory generation of ordinary walking, that of simultaneous walking and turning introduces only two extra parameters: one for determining new heading direction and the other for smoothing the Center of Mass (COM) trajectory. The trajectory design methodology is validated in both simulation and experimental environments, and successful robot behavior confirms the effectiveness of the strategy.We report the development of turning behavior on a child-size bipedal robot that addresses two common scenarios: turning in place and simultaneous walking and turning. About turning in place, three strategies are investigated and compared, including body-first, leg-first, and body/leg-simultaneous, These three strategies are used for three actions, respectively: when walking follows turning immediately, when space behind the robot is very tight, and when a large turning angle is desired. Concerning simultaneous walking and turning, the linear inverted pendulum is used as the motion model in the single-leg support phase, and the polynomial-based trajectory is used as the motion model in the double-leg support phase and for smooth motion connectivity to motions in a priori and a posteriori single-leg support phases. Compared to the trajectory generation of ordinary walking, that of simultaneous walking and turning introduces only two extra parameters: one for determining new heading direction and the other for smoothing the Center of Mass (COM) trajectory. The trajectory design methodology is validated in both simulation and experimental environments, and successful robot behavior confirms the effectiveness of the strategy.

关 键 词:TURNING BIPED HUMANOID trajectory planning ROBOT 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] P542[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象