检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学自动化系,北京100084 [2]北京葫芦软件技术开发有限公司,北京100084
出 处:《自动化学报》2013年第8期1202-1213,共12页Acta Automatica Sinica
基 金:国家自然科学基金重大国际(地区)合作研究项目(61020106004);国家自然科学基金(61005023;61021063);国家杰出青年科学基金项目(61225008);教育部博士点基金(20120002110033)资助~~
摘 要:由于广泛的实用价值与理论价值,超分辨率图像重建(Super-resolution image reconstruction,SRIR或SR)技术成为计算机视觉与图像处理领域的一个研究热点,引起了研究者的广泛关注.本文将超分辨率图像重建问题按照不同的输入输出情况进行系统分类,将超分辨率问题分为基于重建的超分辨率、视频超分辨率、单帧图像超分辨率三大类.对于其中每一大类问题,分别全面综述了该问题的发展历史、常用算法的分类及当前的最新研究成果等各种相关问题,并对不同算法的特点进行了比较分析.本文随后讨论了各不同类别超分辨率算法的互相融合和图像视频质量评价的方法,最后给出了对这一领域未来发展的思考与展望.Because of its extensive practical and theoretical values, the super-resolution image reconstruction (bl^ll~ or SR) technique has become a hot topic in the areas of computer vision and image processing, attracting many researchersI attentions. This paper categorizes the SR problems according to their input and output conditions into three main cat- egories: reconstruction-based SR, video SR and single image SR. For each category, the development history, common algorithm classes and state-of-the-art research achievements are reviewed comprehensively. We also analyze the charac- teristics of different algorithms. Afterwards, we discuss the combination of different super-resolution categories and the evaluation of image and video qualities. Thoughts and foresights of this field are given at the end of this paper.
关 键 词:超分辨率图像重建 计算机视觉 图像处理 方法综述
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171