ABC-BP模型在混凝土双曲拱坝变形监控中的应用  被引量:4

Application of ABC-BP Model in Deformation Monitoring of Concrete Double-curvature Arch Dam

在线阅读下载全文

作  者:陈晨[1,2] 邵晨飞[1,2] 魏玮[1,2] 江潜成[3] 李经纬[1,2] 杨孟[1,2] 

机构地区:[1]河海大学水利水电学院,江苏南京210098 [2]河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098 [3]南昌工程学院水利与生态工程学院,江西南昌330099

出  处:《水电能源科学》2013年第8期112-114,69,共4页Water Resources and Power

基  金:中国电力投资集团公司科技基金资助项目(2011-042-HHS-KJ-X);国家自然科学基金资助项目(51139001;51279052;51209077)

摘  要:因大坝变形具有很强的非线性、随机性,致使预测困难。将人工蜂群算法(ABC)与BP神经网络相结合,利用人工蜂群算法具有强全局优化能力、强鲁棒性等优点,克服BP神经网络收敛速度慢、易陷入局部极小点等缺点,建立ABC-BP、BP神经网络大坝变形预测模型预测了小湾大坝变形。结果表明,与单纯的BP神经网络预测模型相比,ABC-BP算法提高了大坝变形预报的精度,加快了网络的收敛速度,能更高效准确地进行大坝变形监控预报。Dam deformation has characteristics of strong nonlinearity and randomness so that it is difficult for prediction of the dam deformation. Artificial bee colony (ABC) has advantages of global optimization ability and strong robust- ness and it can overcome the disadvantages of slow convergence and easily trapping into local minimal value points for BP neural networks. ABC-BP and BP neural network models for forecasting dam deformation are established by combining BP neural network with the artificial bee colony algorithm. ABC-BP and BP neural network models are applied to predict Xiaowan dam deformation monitoring data. Compared with BP neural network prediction method, the results show that ABC-BP algorithm enhances the precision of dam deformation prediction and accelerates the convergence rate of the network. Thus, ABC-BP model can be more efficient and accurate for prediction of dam deformation monitoring.

关 键 词:大坝变形 小湾大坝 人工蜂群算法 BP神经网络 权值 

分 类 号:TV698.1[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象