检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海工程技术大学航空学院,上海201620 [2]上海对外经贸大学商务信息学院,上海201620 [3]北京邮电大学信息与通信工程学院,北京100876
出 处:《计算机应用研究》2013年第8期2470-2472,共3页Application Research of Computers
基 金:国家"863"计划资助项目(2008AA01Z218)
摘 要:针对网络流量存在概念漂移、不同应用类型数据流偏态分布等特性,提出了基于Hoeffding决策树的自适应分级滑动窗决策树的网络流量识别算法。该算法根据节点信息增益率检测概念漂移、动态调整概念漂移检测窗口及不同类型训练样本集窗口,实现对不同速率概念漂移的自适应分类和决策树更新。实验结果显示新算法对劣势频繁漂移的应用类型的识别准确率与batch C4.5算法接近,比CVFDT算法提高约20%,可以获得更加均衡的不同应用类型分类准确度。Network traffic has characteristics of concept drift, unbalance distribution among different application types. This paper proposed a traffic identification algorithm, named adaptive grading shale window decision tree ( AGSW-DT), based on Hoeffding decision tree. It realized adaptive detection of concept drift and decision tree update according to the information gain ratio of nodes, and then adjusted concept-drifting detection window and training set windows dynamically in accordance with the detection results. Comparing to the experiment results of batch C4.5 and CVFDT, AGSW-DT algorithm gained approximate precision with batch C4.5 algorithm and higher than that of CVFDT algorithm with 20% in terms of minor frequent concept- drifting application types. The proposed algorithm can obtain more balanced classification accuracy among different application types.
分 类 号:TP393.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222