检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南城市学院数学与计算科学学院,湖南益阳413000
出 处:《计算机工程与应用》2013年第16期124-128,共5页Computer Engineering and Applications
基 金:湖南省教育厅青年项目(No.12B04)
摘 要:文本特征提取和分类器优化是文本分类的两个关键问题,为了提高文本分类正确率,提出一种聚类加权(CW)和布谷鸟(CS)算法优化最小二乘支持向量机(LSSVM)的文本分类模型。采用TF-IDF算法计算特征词的权重,根据特征词的位置进行加权,经过特征聚类处理降低特征冗余度,采用LSSVM建立文本分类器,采用CS算法对LSSVM参数进行优化。采用复旦大学语料库对模型性能进行仿真测试,仿真结果表明,模型不仅提高了文本分类的正确率,而且提高了文本分类的效率。Text feature extraction and classifier optimization are two key problems for text categorization, in order to improve correct rate of text classification, this paper proposes a text classification model based on Clustering Weighted (CW) and Least Square Support Vector Machine (LSSVM) optimized by the Cuckoo Search (CS) algorithm. TF-IDF algorithm is used to calcu- late the feature weights, the feature is weighted by words position and features are clustered to reduced feature redundancy, the LSSVM is used to build text classifier which is optimized by CS algorithm. Fudan University data is used to test the perfor- mance of the proposed model. The simulation results show that the proposed model not only improves the classification accura- cy, but also improves the efficiency of text classification.
关 键 词:文本特征 聚类加权 最小二乘支持向量机 布谷鸟搜索算法
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145