基于分段核函数的支持向量机及其应用  被引量:2

Support vector machine based on segmented kernel function and its application

在线阅读下载全文

作  者:李渝[1] 吴增印[1] 

机构地区:[1]西安空间无线电技术研究所,陕西西安710071

出  处:《现代电子技术》2013年第16期5-8,共4页Modern Electronics Technique

基  金:国家自然科学基金(61101127)

摘  要:支持向量机兼顾训练误差和推广性能,已受到机器学习领域的高度重视,而核函数的性能是支持向量机研究中的关键问题。研究了几种常见核函数对支持向量机推广性能的影响,并利用全局核函数和局部核函数的性质,提出了一种新的分段核函数的支持向量机。数据集上的仿真结果表明,该核函数对应的支持向量机泛化能力优于传统核函数对应的支持向量机,具有较好的预测性能。Considering both the training error and the generalization ability of support vector machine,it has been highly valued in the field of machine learning.The performance of kernel function is an important content in the study of support vector machine.The effect of several common kernel functions on generalization ability support vector machine is investigated.A new support vector machine based on piecewise kernel function is proposed according to properties of global and local kernel functions.The simulation results on data set show that the generalization ability of the support vector machine corresponding to kernel function is better than that of traditional kernel functions.It has a better predictive performance.

关 键 词:支持向量机 分段核函数 全局核 局部核 

分 类 号:TN911-34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象