检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东交通大学机电工程学院,江西南昌330013
出 处:《西北农林科技大学学报(自然科学版)》2013年第7期229-234,共6页Journal of Northwest A&F University(Natural Science Edition)
基 金:科技部农业科技成果转化项目(2011GB2C500008);赣鄱英才555工程领军人才培养计划项目
摘 要:【目的】结合遗传算法和最小二乘支持向量机(GA-LSSVM),优化苹果糖度近红外光谱检测的数学模型,提高模型的检测精度和稳定性。【方法】在GA-LSSVM模型建立过程中,采用遗传算法自动获取最小二乘支持向量机的最优参数。【结果】相比于偏最小二乘法(PLS)、传统最小二乘支持向量机(LSSVM)和遗传偏最小二乘法(GA-PLS)数学模型,GA-LSSVM法建立的模型预测效果最优,模型的相关系数为0.94,预测均方根误差为0.32°Brix。【结论】GA和LSSVM相结合的优化方法在提高苹果糖度近红外光谱检测精度和稳定性方面是可行的。【Objective】 The objective of the present research was to optimize the detection of sugar content in apples for improving the detection precision and robustness using near infrared spectroscopy,combined with genetic algorithms and least squares support vector machine(GA-LSSVM).【Method】 In the process of establishing GA-LSSVM model,GA method was used to select the optimal parameters of LSSVM automatically.【Result】 Compared with partial least squares(PLS) model,GA-PLS model and LSSVM model,GA-LSSVM model was more accurate than others.The correlation of predictive model(Rp) was 0.94,and the root mean square error of prediction(RMSEP) was 0.32 °Brix.【Conclusion】 It was feasible to improve the precision of near infrared spectroscopy detection of apple sugar content by the combination GA and LSSVM.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3