检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军械工程学院无人机工程系,石家庄050003 [2]军械工程学院电子与光学工程系,石家庄050003
出 处:《计算机应用》2013年第8期2257-2260,共4页journal of Computer Applications
基 金:国防预研基金资助项目(513270203)
摘 要:传统粒子群算法初期搜索过程中,种群过快地向当前最优粒子飞行,易导致早熟收敛;而算法后期,粒子大量聚集,算法收敛速度慢。通过引入种群进食和二次飞行,提出一种全局性的进食粒子群算法(EPSO),使局部最优附近的粒子进食后快速飞离,以改善种群多样性。并将共轭梯度法(CG)与EPSO相结合形成一种混合优化策略,其中CG用于EPSO的局部搜索过程,以提高收敛速度和精度。利用高维标准测试函数进行寻优实验,并与近年文献方法进行对比,实验结果表明该算法能够克服局部最优的不足,同时继承了CG局部寻优精度高和收敛速度快的特点。Particle Swarm Optimization (PSO) is an intelligent evolutionary approach widely used to search for the global optimal solution. However, fast flying of swarm particles to the current optimal solution at the early algorithm phase may result in premature convergence, and at the late phase, convergence of a majority of particles causes the degradation of swarm speed. To deal with those shortcomings, a new global algorithm named Eating Particle Swarm Optimization (EPSO) was put forward. In this algorithm, the concepts of eating process and second flight were introduced to guarantee particles flying quickly away from the current optimal solution, so that individual diversity was enhanced. Then the proposed EPSO was combined with Conjugate Gradient (CG) method to form a mixed optimization strategy, in which CG was applied to the local optimization of EPSO algorithm to improve the convergence speed and precision. High-dimensional Benchmark functions were used for optimization experiments, of which the results were compared with the methods in recent literature. The results show that the proposed approach can avoid local optimal phenomena, and obtains the merits of CG in terms of optimization accuracy and convergence speed.
关 键 词:粒子群算法 进食过程 二次飞行 共轭梯度 混合优化
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7