BP神经网络在连铸板坯质量在线诊断中的应用  被引量:7

Application of BP Neural Network for On-Line Diagnostics of Continuous Casting Slab Quality

在线阅读下载全文

作  者:郭贤利[1] 彭世恒[1] 仇圣桃[1] 

机构地区:[1]钢铁研究总院连铸技术国家工程研究中心,北京100081

出  处:《钢铁研究学报》2013年第7期58-62,共5页Journal of Iron and Steel Research

基  金:"十二五"科技支撑计划资助项目(2012BAE03B02)

摘  要:为了更好地应用BP神经网络对连铸板坯质量进行在线诊断,基于连铸生产特点,利用采集的过程数据建立了符合生产实际的均一化函数。通过分析BP神经网络中各参数对网络性能及诊断准确率的影响,对BP神经网络的结构及学习算法进行修正,使该网络有选择和有区分地学习铸坯质量知识。结合某钢厂连铸现场数据,以黏结为例,建立了6种网络模型,对各模型算法进行了比较测试。结果表明:采用自定义函数均一化样本或采用提出的差异性算法训练神经网络,均可明显提高诊断准确率;采用选择性算法可确保诊断准确率不变的同时,提高学习速度;修正的算法更能很好地符合连铸生产实际。In order to apply BP neural network in the continuous casting slab on-line diagnostics even better, the homogeneous functions which met the requirements of manufacture were established upon characteristics of the continuous casting. The effect of the parameters of BP neural network on performance and the diagnostic accuracy rate was analyzed. By amending the structure and algorithm of BP neural network, knowledge of the slab quality was learned selectively and discriminatively. Finally, BP neural network was applied to the sticking prediction in the continuous casting processes, and six models were established and compared with the historical data collected from a steel mill. The result show: Sample homogenized by custom functions and difference training algorithm can significantly improve the diagnostic accuracy rate; Selective training algorithm can speed up learning process, but also ensure the same diagnostic accuracy rate. The improved algorithm is in keeping with the real conditions of the continuous casting processes verified by the research result.

关 键 词:连铸板坯 在线诊断 BP神经网络 修正算法 

分 类 号:TG247[金属学及工艺—铸造] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象