多尺度特征和神经网络相融合的手写体数字识别  被引量:14

Handwritten Numeral Recognition Based on Multi-scale Features and Neural Network

在线阅读下载全文

作  者:赵元庆[1] 吴华[2] 

机构地区:[1]安阳师范学院计算机与信息工程学院,安阳455000 [2]安阳师范学院公共计算机教学部,安阳455000

出  处:《计算机科学》2013年第8期316-318,共3页Computer Science

基  金:国家自然科学基金青年基金项目(41001251)资助

摘  要:针对传统特征提取方法无法有效解决书写随意性的干扰问题,提出了一种多尺度特征和神经网络相融合的手写体数字识别方法。首先提取手写体数字二值图像的轮廓、笔画次序等结构特征,并旋转坐标轴,提取多角度结构特征;然后将字符从中心点到外边框划分为K层矩形子层,提取每层图像的灰度特征,最后以两种多尺度特征构建神经网络模型,并预测测试集合样本。将该算法实际用于以MNIST字体库构建的两个数据集识别,其精度高达99.8%,并能有效降低倾斜等手写字体的随意性影响。Aiming at the problem that tradition handwritten numeral recognition method can not solve the interference from writing arbitrary, a new handwritten numeral recognition method was proposed based on nmulti-seale features and neural network. Firstly, two structural features of outline and strokes were extracted, and multi-angle structural features were extracted by rotating the datum line. Second, Multi-level grayscale pixel features were extracted by dividing the ima- ge to K sub-layer from the inside out. Thirdly, BP neural network model was build based on the two features. Lastly, new method was used for The MNIST font library, and the prediction precision reached 99. 8%. The result shows that new algorithm can effectively reduce the impact of tilt.

关 键 词:多尺度 手写体数字识别 多角度结构特征 多层次灰度特征 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象