基于变换域的条带噪声去除方法  被引量:7

Destriping method based on transform domain

在线阅读下载全文

作  者:刘召海[1] 杨文柱[1] 张辰[1] 

机构地区:[1]河北大学数学与计算机学院,保定071002

出  处:《计算机应用》2013年第9期2603-2605,共3页journal of Computer Applications

基  金:国际合作专项(2013DFA11320);国家科技支撑计划项目(2013BAK07B04);河北省科技支撑计划项目(12210133);河北省教育厅资助项目(Q2012063);河北大学人才基金资助项目(2010-207)

摘  要:为解决线扫描图像中的条带噪声干扰问题,提出了傅里叶变换与小波分解相结合的变换域条带噪声去除方法。首先对图像进行多尺度小波分解,将包含条带噪声的小波子带与包含图像信息的小波子带分离;然后对含有条带噪声的小波子带进行傅里叶变换,并对变换系数进行带阻滤波以消除条带噪声。利用实际采集的带有条带噪声的棉花异性纤维图像进行仿真实验,结果表明:傅里叶变换与小波分解相结合的方法,去噪效果明显优于单独使用傅里叶变换或小波分解的方法,既能有效地去除图像中的条带噪声,又能较好地保持图像的细节信息。To remove the stripe noise from the line scan images, a transform domain destriping method which combined Fourier transform and wavelet decomposition was proposed. Firstly, the image was decomposed using multi-resolution wavelet decomposition to separate the subband which contained the stripe noise from other subbands. Then the subband that contained stripe noise was transformed into Fourier coefficients. The Fourier coefficients were processed by a band-stop filter to remove the stripe noise. The live collected cotton foreign fiber images with stripe noise were used in the simulation experiment. The experimental results indicate that the proposed approach which combined Fourier transform with wavelet decomposition can effectively remove the stripe noise from the image while preserving the characteristics of the original image. It gets better destriping effect than just using Fourier transform or wavelet decomposition separately.

关 键 词:条带噪声 变换域 傅里叶变换 小波变换 小波阈值 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象