Proof of a conjecture on a discretized elliptic equation with cubic nonlinearity  被引量:3

Proof of a conjecture on a discretized elliptic equation with cubic nonlinearity

在线阅读下载全文

作  者:ZHANG XuPing YU Bo ZHANG JinTao 

机构地区:[1]School of Mathematical Sciences, Dalian University of Technology

出  处:《Science China Mathematics》2013年第6期1279-1286,共8页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos.11171051 and 91230103)

摘  要:We sharpen and prove a conjecture suggested by Chen and Xie, which states that in Galerkineigenfunction discretization for -Δu = u3 , when the finite-dimensional subspace is taken as the eigensubspace corresponding to an N-fold eigenvalue of -Δ, the discretized problem has at least 3N-1 distinct nonzero solutions. We also present a related result on the multiplicities of eigenvalues of -Δ.We sharpen and prove a conjecture suggested by Chen and Xie, which states that in Galerkin- eigenfunction discretization for -△u = u^3, when the finite-dimensional subspace is taken as the eigensubspace corresponding to an N-fold eigenvalue of -△, the discretized problem has at least 3^N - 1 distinct nonzero solutions. We also present a related result on the multiplicities of eigenvalues of -△.

关 键 词:elliptic equation cubic nonlinearity multiplicity of eigenvalue 

分 类 号:O175.25[理学—数学] TP18[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象