检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄令淼[1] 任树梅[1] 杨培岭[1] 税朋勃[2] 曹建武[2] 周嵘[2]
机构地区:[1]中国农业大学水利与土木工程学院,北京100083 [2]北京市水利水电技术中心,北京100073
出 处:《中国农业大学学报》2013年第5期166-172,共7页Journal of China Agricultural University
基 金:北京市科学技术计划资助项目(pxm2009_035324_092070);北京市干旱风险评估项目
摘 要:对影响土壤墒情的主要气象要素,平均气温、相对湿度、日照时数、平均风速、蒸降差和前一旬土壤墒情进行分析合并,建立BP-ANN土壤墒情预报6因子模型;通过缺省因子检验法,判断土壤墒情对6个因子敏感程度,简化冗余因子,构建BP-ANN的3因子(相对湿度、日照时数、前一旬土壤相对湿度)墒情预报模型。结果表明:3因子模型均方根误差3.55,具有数据收集和处理量小的优点,基本能够达到所需精度和拟合度。在北京市山区和平原区2个典型站点的模拟检验表明,3因子模型实测值与预测值的拟合关系均达到极显著相关水平,可操作性强的特点。Basing on the analysis and merging the major meteorological elements which affect soil moisture, the BP-ANN soil moisture forecast model with six factors was established. The soil moisture sensitivity on six factors was determined by sensitivity analysis. The moisture prediction BP-ANN model was built based on three factors (relative humidity, sunshine hours,average previous ten days of soil moisture). The study showed that the three-factor model root mean square error was 3. 55, with the advantage of small data collection and less processing, which could achieve the required accuracy. The test that three-factor model was applied to mountains and the plains of Beijing showed the measured and predicted values reached a very significant level. It presented the strong characteristics of operability.
关 键 词:土壤墒情 预测预报 人工神经网络 缺省因子分析法
分 类 号:S156.2[农业科学—土壤学] X592[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33