检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张国栋[1,2] 姚庆[2] 蔡诗雨[2] 郭薇[2]
机构地区:[1]东北大学软件中心,沈阳110004 [2]沈阳航空航天大学计算机学院,沈阳110136
出 处:《仪器仪表学报》2013年第8期1766-1770,共5页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(60972117);沈阳市科学技术计划(F10-205-1-06);辽宁省大学生创新创业训练计划(201210143003)资助项目
摘 要:针对多投影图像的特点,提出一种利用同一病人多投影图像中相近位置的候选结节互信息的配准算法,由此来减少检测结果中假阳性结节的数目。通过对多投影图像中候选结节的初始检测与精确分割、特征提取与分类,完成候选结节的检测。此时,在敏感性为65%条件下,平均每张图像检测到的假阳性结节数目为11.3。再使用互信息对检测到的候选结节进行配准,并利用配准信息进一步去掉假阳性结节,平均每张图像检测到假阳性结节的数目降为1.9。即使实验数据大部分为小结节,且图像噪声大,对比度低,此检测结果仍然令人满意。因此,提出的多投影图像肺结节配准算法能有效提高结节的检测性能。Aiming at the characteristics of multi-projection images, the paper proposes a registration algorithm, which makes use of the mutual information of the nodule candidates near to each other in the multi-projection images of the same patient to reduce the number of false positive nodules. The nodule candidates were determined in the steps of initial detection as well as precise identification and segmentation, feature extraction and classification. At the sensi- tivity of 65% , 11.3 false positive nodules per image were determined in average. Then, the detected nodule candi- dates were registered using the mutual information, and the number of false positive nodules was further reduced to 1.9 per image in average. Even though the noise level in the chest radiography was high, the nodule size was small and the contrast of most nodules was low, a satisfactory performance was still achieved. Therefore, the proposed lung nodule registration algorithm can effectively improve the performance of nodule detection.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15