抗复合攻击的社会网络(k,l)匿名方法  被引量:3

(k,l)-Anonymity for Social Networks Publication Against Composite Attacks

在线阅读下载全文

作  者:吴宏伟[1] 张仁伟[2] 王海涛[3] 孙宗宝[3] 

机构地区:[1]哈尔滨理工大学计算中心,黑龙江哈尔滨150080 [2]哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080 [3]哈尔滨理工大学网络信息中心,黑龙江哈尔滨150080

出  处:《哈尔滨理工大学学报》2013年第3期47-53,共7页Journal of Harbin University of Science and Technology

基  金:黑龙江省自然科学基金(G200827)

摘  要:针对社会网络发布时由于复合攻击所带来的隐私泄露问题,提出了一种(k,l)-匿名发布隐私保护方法.首先在k-同构和l-多样性的理论基础上,给出了复合攻击形式和图的(k,l)-匿名模型,并形式化地定义了一类节点具有单敏感属性的简单无向图的(k,l)-匿名问题.同时,提出了一种基于k-匿名和l-多样性的属性泛化算法来解决该匿名问题.实验结果表明:该算法能产生比已有方法更小的信息损失度,以及相当的时间开销,可有效抵御复合攻击,保护发布社会网络的隐私信息.Privacy preserving in social networks has raised serious concerns in recent years. One of the privacy disclosures is brought about through composite attacks( structural attacks and attributes attacks) by malicious users. In this paper, we consider the privacy preserving publication against composite attacks in social networks, which are expressed by simple undirected graphs. Firstly, we present a (k,l)-anonymity graph model based on the theoretical principle of k-isomorphism and the l-diversity, and then a (k,l)-anonymity problem faced the simple undirected graphs is formally defined. In addition, we propose a generalization algorithm based on k-anonymity and l-diversity to solve the problem defined above. The experimental results show that under the equal conditions, our method not only produces less information loss than that of the departed method, but also needs less time cost, which effectively resists composite attacks and preserves privacy information of the published networks.

关 键 词:社会网络 隐私保护 复合攻击 (k l)-匿名 信息损失 

分 类 号:TP392[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象