Characterization of the Formation of Branched Short-Chain Fatty Acid:CoAs for Bitter Acid Biosynthesis in Hop Glandular Trichomes  被引量:9

Characterization of the Formation of Branched Short-Chain Fatty Acid:CoAs for Bitter Acid Biosynthesis in Hop Glandular Trichomes

在线阅读下载全文

作  者:Haiyang Xu Fengxia Zhang Baoxiu Liu David V. Huhman Lloyd W. Sumner Richard A. Dixon Guodong Wang 

机构地区:[1]State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China [2]University of Chinese Academy of Sciences, Beijing 100039, China [3]The Samuel Roberts Noble Foundation, Plant Biology, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA [4]Current address: Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA

出  处:《Molecular Plant》2013年第4期1301-1317,共17页分子植物(英文版)

基  金:the National Program on Key Basic Research Projects,the 'One hundred talents' project of the Chinese Academy of Sciences,the National Natural Sciences Foundation of China,the National Science Foundation,the State Key Laboratory of Plant Genomics of China

摘  要:Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyI-CoAs (e.g. isobutyryI-CoA, isovaleryl- CoA and 2-methylbutyryI-CoA), derived from the degradation of branched-chain amino acids (BCAAs), are essential building blocks for the biosynthesis of bitter acids in hops. However, little is known regarding what components are needed to produce and maintain the pool of branched short-chain acyI-CoAs in hop trichomes. Here, we present several lines of evidence that both CoA ligases and thioesterases are likely involved in bitter acid biosynthesis. Recombinant HICCL2 (carboxyl CoA ligase) protein had high specific activity for isovaleric acid as a substrate (Kcat/Km = 4100 s-~ M-l), whereas recombinant HICCL4 specifically utilized isobutyric acid (Kcat/Km = 1800 s-1 M-1) and 2-methylbutyric acid (Kcat/ Km = 6900 s-1 M-~) as substrates. Both HICCLs, like hop valerophenone synthase (HIVPS), were expressed strongly in glandular trichomes and localized to the cytoplasm. Co-expression of HICCL2 and HICCL4 with HIVPS in yeast led to significant production of acylphloroglucinols (the direct precursors for bitter acid biosynthesis), which further confirmed the biochemical function of these two HICCLs in vivo. Functional identification of a thioesterase that catalyzed the reverse reaction of CCLs in mitochondria, together with the comprehensive analysis of genes involved BCAA catabolism, supported the idea that cytosolic CoA ligases are required for linking BCAA degradation and bitter acid biosynthesis in glandular trichomes. The evolution and other possible physiological roles of branched short-chain fatty acid:CoA ligases in planta are also discussed.Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyI-CoAs (e.g. isobutyryI-CoA, isovaleryl- CoA and 2-methylbutyryI-CoA), derived from the degradation of branched-chain amino acids (BCAAs), are essential building blocks for the biosynthesis of bitter acids in hops. However, little is known regarding what components are needed to produce and maintain the pool of branched short-chain acyI-CoAs in hop trichomes. Here, we present several lines of evidence that both CoA ligases and thioesterases are likely involved in bitter acid biosynthesis. Recombinant HICCL2 (carboxyl CoA ligase) protein had high specific activity for isovaleric acid as a substrate (Kcat/Km = 4100 s-~ M-l), whereas recombinant HICCL4 specifically utilized isobutyric acid (Kcat/Km = 1800 s-1 M-1) and 2-methylbutyric acid (Kcat/ Km = 6900 s-1 M-~) as substrates. Both HICCLs, like hop valerophenone synthase (HIVPS), were expressed strongly in glandular trichomes and localized to the cytoplasm. Co-expression of HICCL2 and HICCL4 with HIVPS in yeast led to significant production of acylphloroglucinols (the direct precursors for bitter acid biosynthesis), which further confirmed the biochemical function of these two HICCLs in vivo. Functional identification of a thioesterase that catalyzed the reverse reaction of CCLs in mitochondria, together with the comprehensive analysis of genes involved BCAA catabolism, supported the idea that cytosolic CoA ligases are required for linking BCAA degradation and bitter acid biosynthesis in glandular trichomes. The evolution and other possible physiological roles of branched short-chain fatty acid:CoA ligases in planta are also discussed.

关 键 词:CoA ligase glandular trichomes bitter acid THIOESTERASE evolution Humulus lupulus 

分 类 号:TQ465.5[化学工程—制药化工] S828.5[农业科学—畜牧学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象