嵌入深度信念网络的点过程模型用于关键词检出  被引量:5

Point process models embedded with deep belief networks for spotting Key words

在线阅读下载全文

作  者:陆俊[1,2] 张琼 杨俊安[1,2] 王一[1,2] 刘辉[1,2] 

机构地区:[1]电子工程学院,合肥230037 [2]电子制约技术安徽省重点实验室,合肥230037 [3]中国电子设备系统工程公司研究所,北京100039

出  处:《信号处理》2013年第7期865-872,共8页Journal of Signal Processing

基  金:国家自然科学基金(No.61272333)

摘  要:基于点过程模型的关键词检出系统是一种新颖的连续语音关键词检出系统,虽然该系统具有对样本数要求不高、计算速度快等优点,但其检出性能比较依赖于前端音素探测器的准确度,而目前广泛用于音素探测器的高斯混合模型存在表征和建模能力不强的问题。针对这一缺陷,本文提出了一种嵌入深度信念网络的点过程模型并将其应用于关键词检出,该模型采用表征能力强的深度信念网络来建立音素探测器,改进了高斯混合模型在表征能力上的不足。实验结果表明该方法能够获得比原模型更高的检出率,并且降低了计算复杂度,更适用于需要实时检测关键词的场合。The keywords spotting system based on point process model is a novel keyword spotting system in continuous speech.Although this system has the advantage of less demanding on samples number and fast calculation,but its performance is mostly depends on the accuracy of the front phoneme detector.However,the Gaussian mixture model which is widely used in the phoneme detector has weaknesses in representation and modeling.To solve this problem,this paper proposes a point process model embedded with deep belief networks and use it for Key words spotting.This model establishes a phoneme detector using deep belief networks,which has a prominent capability to represent features,to overcome GMM's shortage in feature representation.Experimental results show that this method can obtain a higher detection rate than the original model and reduce the computational complexity,and it can meet the real-time requirement of spotting Key words preferably.

关 键 词:关键词检出 点过程模型 深度信念网络 

分 类 号:TN912.34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象