检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统仿真学报》2000年第6期660-663,共4页Journal of System Simulation
基 金:国家自然科学基金资助项目!(69674020)
摘 要:研究了卡尔曼滤波器算法的基础上,提出随机系统多参考模型卡尔曼滤波器的新方法。该方法用N个线性模型近似表示参数变化很大的非线性系统。再用卡尔曼滤波器对N个模型进行滤波,得到N个状态的估计值。然后,对这N个状态估计值进行概率加权求和,得到最优状态估计值。分别针对二阶系统和船舶模型进行了大量的仿真研究。仿真结果展示,该方法具有广阔的工程应用前景。: Based on a deep investigation on Kalman filters, this paper presents a parallel multiple-model Kalman filter method. The method utilizes a group of parallel linear models, for instance N models, to represent nonlinear systems. Kalman Filters associated with the group of models are used so that N estimated states are obtained. Then the N state estimates, each of which is weighted by its possibility that is also calculated on-line, are combined to form a optimal estimate. Through a lot of simulations for both a second-order system and a ship-control system, it demonstrated that the method is effective for systems with sharply changing parameters. Simulations also show that the method is applicable to a number of engineering problems for state estimates and parameter identifications.
分 类 号:TN713[电子电信—电路与系统] TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

