并行多参考模型卡尔曼滤波系统仿真研究  被引量:5

Simulation Study on Parallel Multiple-Model Kalman Filter Systems

在线阅读下载全文

作  者:任光[1] 刘军[1] 朱利民[1] 

机构地区:[1]大连海事大学轮机工程学院,大连116026

出  处:《系统仿真学报》2000年第6期660-663,共4页Journal of System Simulation

基  金:国家自然科学基金资助项目!(69674020)

摘  要:研究了卡尔曼滤波器算法的基础上,提出随机系统多参考模型卡尔曼滤波器的新方法。该方法用N个线性模型近似表示参数变化很大的非线性系统。再用卡尔曼滤波器对N个模型进行滤波,得到N个状态的估计值。然后,对这N个状态估计值进行概率加权求和,得到最优状态估计值。分别针对二阶系统和船舶模型进行了大量的仿真研究。仿真结果展示,该方法具有广阔的工程应用前景。: Based on a deep investigation on Kalman filters, this paper presents a parallel multiple-model Kalman filter method. The method utilizes a group of parallel linear models, for instance N models, to represent nonlinear systems. Kalman Filters associated with the group of models are used so that N estimated states are obtained. Then the N state estimates, each of which is weighted by its possibility that is also calculated on-line, are combined to form a optimal estimate. Through a lot of simulations for both a second-order system and a ship-control system, it demonstrated that the method is effective for systems with sharply changing parameters. Simulations also show that the method is applicable to a number of engineering problems for state estimates and parameter identifications.

关 键 词:卡尔曼滤波系统 系统仿真 多参考模型 

分 类 号:TN713[电子电信—电路与系统] TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象