检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州文理学院电子信息工程学院,甘肃兰州730000 [2]兰州理工大学研究生学院,甘肃兰州730050
出 处:《兰州理工大学学报》2013年第4期94-98,共5页Journal of Lanzhou University of Technology
摘 要:为有效解决网格计算中的资源分配和任务调度问题,提出一种改进粒子群-蚁群融合算法.该算法通过改进的离散粒子群算法对信息进行优化调度,产生优选的调度列表,并通过该列表产生改进蚁群算法的初始信息素,有效克服了粒子群算法后期局部搜索能力差和蚁群算法前期盲目搜索的缺陷.理论分析和仿真实验表明本文算法具有较好的性能.In order to solve the problems of resource allocation and task dispatch in grid computation, a improved mixing algorithm with particle swarm-ant colony was presented. In this algorithm, the schedu- ling information was dispatched with optimization by means of improved discrete particle swarm algo- rithm, producing an optimized scheduling list. By using this list, initialized pheromone was generated for the improved ant colony algorithm and the defect that the particle swarm algorithm has poor local search capability in the post-stage and blind search of ant colony algorithm in the early stage was overcome. The theoretical analysis and simulation test showed that the algorithm proposed in this paper would have better performance.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7