检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南林业大学计算机与信息学院,云南昆明650224
出 处:《遥感技术与应用》2013年第4期633-639,共7页Remote Sensing Technology and Application
基 金:云南省应用基础研究面上基金资助项目(2011FZ140;2010CD047)
摘 要:为了较好地处理遥感图像的不确定性或模糊性,提高分类精度,提出了一种基于模糊子集的土地利用遥感图像模糊规则分类方法。将模糊隶属度函数值对应到特定的模糊子集建立模糊规则条件,由样本建立分类规则库,通过计算分类数据规则条件部分与分类规则库中规则条件部分的模糊贴进度进行土地利用分类。结果表明:与传统的最大似然法分类方法相比,基于模糊规则的分类方法在高模糊性数据分类中显著提高了分类精度,在低模糊性数据分类中也能取得与最大似然法近似的结果。In order to represent vague and imprecise value and improve the classification accuracy of remote sensing images,a fuzzy rule-based classification method was proposed. Firstly,by transforming the fuzzy membership function values into corresponding fuzzy subsets, fuzzy rule conditions were established. And then, the fuzzy rule database was derived from samples. Finally, based on the fuzzy nearness degrees of rule conditions were calculated from classified data and fuzzy rule database, the land use was classified. The ex perimental results show that the proposed method is able to significantly improve the classification accuracy than the maximum likelihood method while the data contains complex mixture of spatial information. Fur thermore, this method can get the approximate results as the maximum likelihood method while the data contains relatively homogeneous spatial information.
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.96