检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周舟[1]
机构地区:[1]安徽财经大学管理科学与工程学院,安徽蚌埠233030
出 处:《大众科技》2013年第8期10-12,15,共4页Popular Science & Technology
摘 要:基于服务使用模式,电信服务提供商将他们的客户分成基本服务、电子服务、附加服务和全方位服务4类,则可以根据人口统计数据来预测组成员,为电信潜在客户推荐相应的套餐方案。使用多项式logistic回归进行类别的判定训练,通过比对样本中客户类别的实际观察值,统计获得多种协变量下各类客户的判定准确率,记录用于较高判定准确率的字段,用于考察潜在客户所对应的类别。实验结果表明:用户的受教育水平、在职年期、定居年期和家庭成员人数对附加服务类和全方位服务类的判定准确率较高,可作为判定潜在用户类别的有效特征字段。According to usage patterns of customers, telecom service providers classify them into four categories: basic services, e-services, additional services and full-service. Based on demographic data, we can predict group membership and recommend the appropriate service for the telecommunications potential customers. Use logistic regression train to discriminate telecom customer category. Compare the predicted classified values and the samples' actually observed values. By calculating the statistics, we can obtain the discriminating accuracy values of different variables we choose for different category customers. Recording fields of high discriminating accuracy, we can investigate the categories of potential customers. The experimental results show that the user's education level, job tenure, settled lives and the number of family members leads high discriminating accuracy for additional services and full-service class. These fields should be investigated from potential users' demographics.
关 键 词:电信客户 类别判定 多项式logistic回归 判定准确率
分 类 号:TN914[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28