The coninvolutory decomposition and its computation for a complex matrix  

The coninvolutory decomposition and its computation for a complex matrix

在线阅读下载全文

作  者:CHEN Xiao-shan 

机构地区:[1]School of Mathematics, South China Normal University

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2013年第3期303-310,共8页高校应用数学学报(英文版)(B辑)

基  金:Supported by the Natural Science Foundation of Guangdong Province(91510631000021,s2012010009985);Research Fund for the Doctoral Program of Higher Education of China(20104407110001);the National Natural Science Foundation of China(11271144,10971075,and 11101164)

摘  要:A complex, square matrix E is called coninvolutory if EE = I, where E denotes complex conjugate of the matrix E and I is an identity matrix. In this paper we introduce the coninvolutory decomposition of a complex matrix and investigate a Newton iteration for computing the coninvolutory factor. A simple numerical example illustrates our results.A complex, square matrix E is called coninvolutory if EE = I, where E denotes complex conjugate of the matrix E and I is an identity matrix. In this paper we introduce the coninvolutory decomposition of a complex matrix and investigate a Newton iteration for computing the coninvolutory factor. A simple numerical example illustrates our results.

关 键 词:coninvolutory decomposition Newton iteration spectral norm. 

分 类 号:O151.21[理学—数学] TN247[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象