检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨悦[1]
机构地区:[1]四川大学软件学院,成都610064
出 处:《科学技术与工程》2013年第26期7856-7861,共6页Science Technology and Engineering
基 金:国家自然科学基金(61074077)项目资助
摘 要:为了改进离散灰色模型的预测精度,对离散灰色模型进行了修正,建立了离散灰色优化模型。离散灰色优化模型的核心在于对1阶累加生成序列(first order-accumulating generator operator(1-AGO)sequence)的平移变换。其中,最佳平移值可以通过最优化方法得到。算例的对比结果显示,DGOM(1,1)模型的模拟精度高于DGM(1,1)模型的模拟精度。进一步的研究表明,将DGOM(1,1)模型与其他优化模型相结合,可以使模型的模拟精度更高。文中讨论了DGOM(1,1)模型的特征,包括平移变换提升模拟精度的机理、DGOM(1,1)模型与其他优化模型之间的关系等。工作丰富了灰色预测理论,并且提出了一些新的灰色预测模型。In order to improve the forecasting precision of discrete grey model (DGM) , a new modified DGM ( 1,1 ) model called discrete grey optimization model (DGOM) is created. The key of this model is a parallel trans- formation which is applied to the first order-accumulating generator operator (1-AGO) sequence. And the optimal parallel value c can be obtained based on the optimization method. The contrasted result of a numerical example shows that DGOM (1,1) yields a more accurate prediction capability than DGM( 1,1 ) does. Integrating with other improved models such as optimized starting-point fixed discrete grey model and residual modified model, DGOM ( 1, 1 ) can be characterized by even more accurate prediction for the grey modeling. Moreover, the mechanism of the parallel transformation to improve the forecasting precision and the relationship between DGOM (1,1) and another optimization of DGM are also discussed to demonstrate the characteristics of DGOM( 1,1 ) more clearly. This work contributes significantly to improve grey forecasting theory and proposes more novel grey forecasting models.
分 类 号:TP306[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.83.94