检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒲骁旻[1]
机构地区:[1]湖南工业职业技术学院信息工程系湖南长沙410208
出 处:《计算机应用与软件》2013年第9期300-304,308,共6页Computer Applications and Software
摘 要:传统多目标优化算法得到的解集是整个Pareto最优面,需要花费大量精力在Pareto最优解的搜索上,同时当问题目标个数较多时,决策者很难从大量的解中选出自己最满意的解。因此,针对上述问题,提出一种基于邻居关系的偏好多目标进化算法。该算法通过一个邻居支配关系对非支配个体集进行适应度分层,借助参考点引导个体种群向决策者感兴趣的区域靠近。通过与几种经典的偏好多目标进化算法进行比较实验,结果表明,所提出的算法能引导种群趋近于决策者最满意的区域。The solutions set gained by traditional multi-objective optimisation algorithms is the entire optimal surface of Pareto, this has to pay much attention to searching the Pareto-optimal solutions. Meanwhile, when the number of objectives for the problem is large, it' s difficult for the decision maker to choose the most satisfying solution from so many solutions. Therefore, considering the above problems, we propose a neighbour relationship-based preference multi-objective evolutionary algorithm. By stratifying the fitness on the non-dominant individuals set by a neighbour dominant relationship and using the reference point, the algorithm guides the individual population approaching the interested region of the decision maker. According to the comparison experiments with some classical preference multi-objective evolutionary algorithms, the results show that the proposed algorithm can well guide the population closing to the most satisfying areas of the decision makers.
关 键 词:多目标进化算法 引用点方法 邻居支配关系 感兴趣区域 偏好信息
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.29