检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽医科大学附属省立医院,安徽省立医院B超室,合肥230001
出 处:《中国临床保健杂志》2013年第5期456-458,I0001,共4页Chinese Journal of Clinical Healthcare
摘 要:目的探讨Bayes分析指导卵巢肿瘤诊断的可行性及其意义。方法将卵巢肿瘤患者分为良性肿瘤组、交界性肿瘤组和恶性肿瘤组三组,选取每组患者的年龄、CA125、肿块最大径及肿瘤内动脉的阻力指数(RI)作为代表因素;比较三组间代表因素间的差异,最后行Bayes判别分析。结果三组卵巢肿瘤患者的年龄、CA-125、肿块最大径及肿瘤内动脉RI差异有统计学意义(P<0.05)。Bayes分析法判断良性肿瘤组、交界性肿瘤组和恶性肿瘤组正确率分别为76.92%、70.00%及74.51%。结论年龄、CA125、肿块大小及肿瘤内动脉RI的Bayes逐步判别分析用于指导卵巢肿瘤的诊断具有一定的可行性。Objective To explore the feasibility and the value of Bayes analysis in clinical decision of ovari- an neoplasms. Methods A total of 152 ovarian neoplasms were divided into 3 groups:benign group( n = 51 ) , border- line group( n = 10) and malignant group( n = 9t ). We took age, serum CA125 level, ultrasonographic parameters and Doppler blood flow signals as differential diagnosis variable. Results The parameters of age, serum CA125 level, ul- trasonographic parameters in benign groups had statistical difference with those in malignant groups ( P 〈 0.05 ). The accuracy of Bayes analysis rate was 76.92% ,70.00%, and 74.51% respectively. Conclusion Combination of sono- graphic and clinical feature might be helpful for making differential diagnosis. It is feasible to use Bayes analysis for the management of ovarian neoplasms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.55