基于模糊聚类的城轨列车辅助逆变器故障诊断  被引量:2

A Method of Metro Vehicle Auxiliary Inverter Fault Diagnosis Based on Fuzzy Clustering Arithmetic

在线阅读下载全文

作  者:马增涛[1] 高军伟[1,2] 冷子文 张彬[1] 姚德臣[2] 杨艳[1] 

机构地区:[1]青岛大学自动化工程学院,山东青岛266071 [2]北京交通大学轨道交通控制与安全国家重点实验室,北京100044

出  处:《青岛大学学报(工程技术版)》2013年第3期8-14,共7页Journal of Qingdao University(Engineering & Technology Edition)

基  金:国家科技支撑计划项目(2011BAG01B05);轨道交通控制与安全国家重点实验室课题(RCS2011K005;RCS2012K006);山东省基金课题(BS2011DX008;ZR2009FQ012;ZR2011FM008);国家863计划项目(2011AA110501)

摘  要:针对辅助逆变器结构复杂,易产生故障等问题,本文基于小波包频带能量分解的基本原理和模糊C均值聚类算法,研究了模糊C均值聚类算法在辅助逆变器故障诊断中的应用,并以MATLAB软件为仿真平台实现对故障信号的仿真,在仿真中设置电压频率变化、供电中断、脉冲暂态等几类故障,同时选用基于小波包频带能量分解的方式提取故障特征向量作为故障诊断的标准样本,通过计算待诊断样本与标准样本的贴近度,实现故障模式识别。仿真结果表明,模糊C均值聚类算法可以准确地进行故障分类。该研究为城轨列车辅助逆变系统的故障诊断提供了理论依据。In this paper, the authors study the application of the fuzzy C-means clustering algorithm in the fault diagnosis of auxiliary inverter based on the basic principle of wavelet packet frequency band energy decomposition and the fuzzy C-means clustering algorithm in order to solve the problems of auxiliary inverter causing by its complicated structure. Using MATLAB software as the platform to simulate the fault signal, several fault types are set during the simulation, such as variations of voltage frequency, interruption of power supply, pulse transient and so on. Based on the decomposition of wavelet packet frequency band energy, the fault feature vectors can be extracted as the standard samples of fault diagnosis, then calculating the similarity degree of the samples to be diagnosed and the standard samples to realize the recognition of fault pattern. The simulation results show that the faults can be identified accurately based on FCM algorithm. This research provides theoretical basis for auxiliary inverter system fault diagnosis of metro vehicle.

关 键 词:辅助逆变器 小波包 模糊C均值聚类 故障诊断 

分 类 号:TM464[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象