检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳航空航天大学自动化学院,沈阳110136
出 处:《兵工自动化》2013年第10期28-32,共5页Ordnance Industry Automation
基 金:国家自然科学基金(61074159);辽宁省自然科学基金资助项目(20092053)
摘 要:针对风场干扰下多无人机(UAV)编队的控制问题,提出一种基于一致性卡尔曼滤波的多无人机编队控制算法。根据一致性卡尔曼滤波算法,测量每架无人机的风场干扰误差,预测控制编队中各机的相对位置;设置编队的中心关键点,并利用总卡尔曼滤波器调整其位置,由此实现了一致性卡尔曼滤波算法与航迹修正相结合解决风场干扰下多无人机编队的控制问题;并将该算法应用到轨迹跟踪问题,从而实现编队对复杂航迹的实时跟踪。仿真结果表明,文中提出的算法具有很好的灵活性、鲁棒性、可靠性和可伸缩性。With respect to the problem of controlling unmanned aerial vehicles (UAVs) formation under wind interference, the UAV formation control algorithm based on consensus Kalman filtering algorithm was proposed. Firstly the wind field measurement errors of each UAV can be estimated and the relative position of each UAV in the formation can be predicted by using consensus-based Kalman filtering algorithm. Secondly the formation center is set and it's position can be modified by the center Kalman filter. Then the control algorithm is achieved by combining the consensus-based Kalman filtering algorithm and the trajectory correction to solve the problem of UAVs formation under wind interference. At last, this algorithm is applied into the trajectory tracking problem and it can realized the timely tracking of complex formation trajectory. The simulation was computed to show the flexibility, robustness, reliability and scalability of the mentioned algorithm.
关 键 词:风场干扰 一致性卡尔曼滤波 航迹修正 UAV编队
分 类 号:TJ85[兵器科学与技术—武器系统与运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143