检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学理学院,上海200444
出 处:《应用数学与计算数学学报》2013年第3期394-407,共14页Communication on Applied Mathematics and Computation
基 金:国家自然科学基金资助项目(11071157);上海市教育委员会重点学科建设资助项目(J50101)
摘 要:非线性Schrdinger方程及其相关方程在许多领域都得到广泛应用.为了研究谱参数随时间变化时散焦非线性Schrdinger方程的性质,研究了三个非等谱散焦非线性Schrdinger方程.对于前两个方程,给出了它们与等谱方程之间的规范变换,以及多孤子精确解.对于第三个方程给出了单孤子解.The nonlinear SchrSdinger equation and its relatives have been applied widely in variety of fields. Particularly, in recent years, the nonlinear SchrSdinger equation is used to model rogue waves which are the waves characterized by spa- tially and temporally localized amplitudes. In this paper, three non-isospectral defocusing nonlinear SchrSdinger equations are investigated corresponding to time- dependent spectral parameters that can lead to waves with time-dependent ampli- tudes. Among the three non-isospectral defocusing nonlinear SchrSdinger equa- tions, the first two are gauge equivalent to the isospectral defocusing nonlinear SchrSdinger equation. Therefore, their Lax pairs and exact soliton solutions are given via gauge transformations from those of the isospectral defocusing nonlinear SchrSdinger equation. For the third one, one of its soliton solutions is derived, and its dynamics is investigated.
关 键 词:非等谱散焦非线性Schrodinger方程 规范变换 精确解
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28