检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王丽娜[1,2] 朱西存[2,3] 刘庆[1] 赵庚星[2] 李海燕[2] 王凌[2] 张圣武[4]
机构地区:[1]山东省黄河三角洲生态环境重点实验室(滨州学院),山东滨州256603 [2]山东农业大学资源与环境学院,山东泰安271018 [3]山东农业大学农业生态与环境重点实验室,山东泰安271018 [4]泰安市国土资源局,山东泰安271000
出 处:《土壤通报》2013年第5期1101-1106,共6页Chinese Journal of Soil Science
基 金:山东省黄河三角洲生态环境重点实验室开放基金(2010KFJJ01);中国博士后基金(20110491616);山东农业大学博士后基金(89841);山东农业大学青年科技创新基金(23731)资助
摘 要:利用高光谱探测数据,对黄河三角洲盐碱土盐分含量进行定量估测,为土壤盐分含量提供一种快速、实时、准确的估测方法。以黄河三角洲为研究区,在分析盐碱土光谱曲线变化规律的基础上,进行光谱反射率一阶微分和倒数的对数与土壤盐分含量进行相关分析,筛选敏感波长,运用主成分回归分析方法,建立土壤盐分含量估测模型,并对模型进行精度验证。结果表明,一阶微分变换可以扩大样品之间的光谱特征差异,提高了相关性;通过相关分析选出的敏感波长为388 nm、515 nm、962 nm、1164 nm、1623 nm和2150 nm;建立了土壤盐分含量的主成分回归估测模型y=4.389-798x388′-632x515′-151x962′-184x1164′-138x1623′-217x2150′,经精度验证,模型(R2=0.8405,RMSE=1.152)拟合效果较好。利用主成分回归分析方法估测黄河三角洲地区的土壤盐分含量精度较高,为实现土壤盐分的定量估测提供了理论依据和技术支撑。This paper is to use hyperspectral data to conduct quantitative estimation of saline-alkali soil salinity spectrum on Yellow River Delta, providing a quick and real-time and accurate estimation method for soil salt content. In the studied area of Yellow River Delta, based on the change law analysis of soil spectrum curve, by means of related analysis on the content of soil salt and the transformation of first order differential and the logarithm of reciprocal of spectral reflectance, screening sensitive wavelength, it uses principal component regression analysis method to set up the soil salt estimating model, and verifies the model accuracy. The results show that first order differential transform can expand the difference of spectrum characteristics between samples and improve the correlation; According to the correlation analysis it selects 388 nm, 515 nm, 962 nm, 1164 nm, 1623 nm and 2150 nm as sensitive wavelength; Using principal component regression analysis to establish the soil salt estimating model Y=4.389-798x338'-632x515'-151x963'-184x1164'-138x1623'-217x2150', by way of the model accuracy verification, the model (R2 = 0.8405, RMSE = 1.152) is good. Principal component regression analysis method is suitable for the estimation soil salt content of the Yellow River Delta, providing theoretical basis and technical support to realize the soil salt quantitative estimation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28