美国白蛾幼虫网幕图像识别算法  被引量:1

Image Recognition Algorithm of Hlyphantria cunea Larva Net

在线阅读下载全文

作  者:赵颖[1] 孙群[1] 葛广英[2] 

机构地区:[1]聊城大学汽车与交通工程学院,聊城252000 [2]聊城大学物理与信息工程学院,聊城252000

出  处:《农业机械学报》2013年第9期198-202,208,共6页Transactions of the Chinese Society for Agricultural Machinery

基  金:山东省自然科学基金资助项目(ZR2012CQ026;ZR2011EL038);山东省高等学校科技发展计划资助项目(J11LD16;J12LB63)

摘  要:根据美国白蛾幼虫网幕图像色彩分布特征,选择RGB颜色空间,分析网幕、叶片和树枝的各通道数据的差值,采用R-B色差模型并结合最大类间方差法和阈值算法,分割网幕图像。使用Freeman编码算法和区域标记计算出每一区域的面积,使用多个面积的平均值和标准方差确定面积双阈值,进行残余噪声去除。根据面积分别对大片白色区域和细小白色区域使用改进的膨胀腐蚀法进行图像补偿。实验表明,网幕图像识别精度在85%以上,单幅图像处理时间小于40 ms。According to color distribution characteristics of Hlyphantria cunea larva nets,RGB color space was selected and the data differences of each channel were analyzed for net curtains,leaves and branches.Furthermore,R-B color model with the Otsu method and threshold algorithm were used to segment images.The region labeling and Freeman coding methods were adopted to calculate the area of each region.The double threshold value was determined and residual noise was removed by using the mean and standard deviation of a plurality area.According to the differences between area sizes,fine white and white regions were compensated by using improved expansion corrosion method.Experimental results showed that the accuracy of net curtain image recognition was above 85% and single image processing time was less than 40 ms.

关 键 词:美国白蛾 幼虫网幕 图像识别 

分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置] S763.42[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象