检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:虞一琦[1] 徐岗[1] 王毅刚[2] 汪国昭[3]
机构地区:[1]杭州电子科技大学计算机学院杭州310018 [2]杭州电子科技大学数字媒体与艺术设计学院,杭州310018 [3]浙江大学数学系杭州310027
出 处:《计算机辅助设计与图形学学报》2013年第10期1439-1445,共7页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(61004117,61272390,61003193);浙江省自然科学基金(Y1090718);国防基础科研计划(A3920110002);教育部留学回国人员科研启动基金([2012]1707);杭州电子科技大学校科研启动基金(KYS055611029)
摘 要:极小曲面和测地线是建筑几何领域中2类重要的几何元素,而调和曲面常作为极小曲面的一种线性近似.文中将测地线和调和曲面结合起来,提出一种过给定测地线的调和Bézier曲面设计方法.首先给出了一种构造调和Bézier曲面的新方法,证明了调和Bézier曲面的形状由第一层和第二层的控制顶点完全决定;然后根据测地线的性质,证明了过给定测地线的调和Bézier曲面的形状由该测地线和第二层的首末2个控制顶点完全决定.最后通过若干实例验证了该方法的有效性.文中方法充分利用了测地线和调和曲面的特殊几何性质,对张拉膜建筑结构的几何设计具有一定的实用价值.Minimal surfaces and geodesics are two important kinds of elements in the field of architecture geometry, and the harmonic surface is often considered as a linear approximation of minimal surface. In this paper, by the combination of geodesic and harmonic surface, we propose a new method which generates harmonic B6zier surfaces determined by a given geodesic. We originally prove that the control points on the first and second layers of the control mesh are the only factors that determine the shape of a certain harmonic B6zier surface. With this property of harmonic surfaces, we further prove that the shape of harmonic B6zier surface through a given geodesic is entirely determined by the given geodesic and two control points on opposite end of the second layer..At the end of this paper, the effectiveness of the proposed method is illustrated by several examples with data analysis. The proposed construction method is derived from the geometric properties of geodesic and harmonic surfaces, which is valuable for the design of tension membrane structure.
分 类 号:TP391.72[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151