检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科学技术大学电子科学与工程学院,长沙410073
出 处:《电子与信息学报》2013年第10期2467-2474,共8页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61171135;60972120)资助课题
摘 要:利用多角度SAR数据实现目标高分辨率3维成像对雷达自动目标识别具有重要价值。该文在目标散射稀疏性前提下提出了基于压缩感知的多角度SAR 3维成像方法。文章首先论证多角度SAR测量能够改善测量矩阵的互不相关性。然后根据互不相干影响因素分析,合理选择目标离散间隔构造多角度SAR测量矩阵。最后利用分段正交匹配追踪算法实现目标向量的稀疏重构。该文算法不仅改善了高度分辨率,而且克服了多角度SAR空间采样不连续导致的高旁瓣问题。实验验证了该算法的可行性和稳定性。Carrying out 3-D imaging with multi-aspect SAR data is impressive to radar Automatic Target Recognition (ATR). This paper presents a multi-aspect SAR 3-D imaging technique based on compressive sensing, provides that the target scattering field is sparse. Firstly, it is validated that by multi-aspect SAR measurements the mutual incoherence of measurement matrix is improved. Secondly, the measurement matrix is constructed by carefully selecting the sampling interval in the space domain based on the analysis of mutual incoherence. Finally, the object sparse vector is reconstructed with Stagewise Orthogonal Matching Pursuit (StOMP) algorithm. The proposed method not only improves the resolution of elevation dimension, but also conquers the acute lobe-side resulted from incontinuous sampling. Numerical experiments are given to illustrate the effectiveness and robustness of the proposed method.
关 键 词:多角度SAR数据 3维雷达成像 压缩感知 稀疏信号
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117