检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]渭南师范学院数学与信息科学院,陕西渭南714000
出 处:《数学的实践与认识》2013年第17期195-199,共5页Mathematics in Practice and Theory
基 金:陕西省教育厅自然科学基金(12JK0866)
摘 要:研究在1/2Z^+中的F-可流拟阵的幼阵的可流性.首先给出F-可流拟阵的充要条件及在1/2Z^+中是F-可流拟阵的定义.证明了辅助命题:若拟阵是无环元的,则它的每个元素都恰在k个余极小圈之中;对满足一定的条件的极小圈集合,成立最小极小圈集合的等式.设映射p′在幼阵中满足1/2Z^+中(F-Z_1)-可流拟阵的不等式,由p′定义p.证明p在拟阵中满足同样的不等式.由映射Φ满足是12/Z^+中F-可流拟阵的等式,可找到最小属于幼阵的极小圈,定义Φ′(C′)则可证明Φ′满足在1/2Z^+中是(F-Z_1)-可流的等式.即由在1/2Z^+中F-可流拟阵的充要条件,证明了幼阵在1/2Z^+中是(F-Z_1)-可流的.Some properties of minors of F-fiowable matroid in 1/2Z are investigated. The definition of F-flowable matroids in 1/2 Z+ and necessary and sufficient conditions that a matriod is F-fiowable axe given. It is proved that if a matroid has no loop elements, then its every element is contained in the k minimum coircuits. For a set of minimum circuits satisfying certain conditions, there exist an equality of minimum sets of minimum circuits. For a function 1/2Z+ ,defined p by p,it p' in minors satisfying inequality of (F - Z1)-flowable matroid in 1/2Z+ , defined p by p', it is proved that p also satisfy the same inequality. From the function Ф which satisfying the equality of F-flowable matroids, the minimum circuits belongs to minors can be found, defined Ф' (C') and then, it can be showed that Ф' satisfy the (F - Z1)-flowable equality in 1/2Z+. By the sufficient and necessary conditions of F-flowable in 1/2Z , the (F - Z1)-flowability of minors (M - Z1)/Z2 in 1/2Z is proved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222