检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段其昌[1] 唐若笠[1] 徐宏英[1] 李文[1]
出 处:《控制与决策》2013年第9期1436-1440,共5页Control and Decision
基 金:重庆市重点科技攻关项目(2011AB6054)
摘 要:针对标准粒子群算法(PSO)寻优多维多极值函数成功率低,基本人工鱼群算法(AFSA)收敛速度和精度有待提高等问题,提出粒子群优化鱼群算法(PSO-FSA).该算法将速度惯性、个体记忆和个体间交流等特征引入鱼群算法,使鱼群行为模式扩充至追尾、聚群、记忆、交流以及觅食.此外,定义参数max动态限定鱼群搜索的视野和步长.仿真分析表明,粒子群优化鱼群算法较两种基本算法而言具有更快的收敛速度和寻优精度.To solve the problem that the standard particle swarm optimization(PSO) algorithm has a low success rate when applied to the optimization of multi-dimensional and multi-extreme value functions,and the convergence rate and precision of basic artificial fish-swarm algorithm(AFSA) also need to be improved,an algorithm called PSO-FSA is proposed.This algorithm introduces the velocity inertia,remembering capacity and communicating capacity of PSO algorithm into the AFSA.As a result,the PSO-FSA has totally five kinds of behavior pattern as follows: swarming,following,remembering,communicating and searching.In addition,a parameter called max is defined to limit the visual and step of the fish swarm dynamically.The simulation analysis shows that the PSO-FSA has a better performance in convergence speed,searching precision compared to the standard PSO algorithm and the basic AFSA.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158