粒子群优化鱼群算法仿真分析  被引量:28

Simulation analysis of the fish swarm algorithm optimized by PSO

在线阅读下载全文

作  者:段其昌[1] 唐若笠[1] 徐宏英[1] 李文[1] 

机构地区:[1]重庆大学自动化学院,重庆400044

出  处:《控制与决策》2013年第9期1436-1440,共5页Control and Decision

基  金:重庆市重点科技攻关项目(2011AB6054)

摘  要:针对标准粒子群算法(PSO)寻优多维多极值函数成功率低,基本人工鱼群算法(AFSA)收敛速度和精度有待提高等问题,提出粒子群优化鱼群算法(PSO-FSA).该算法将速度惯性、个体记忆和个体间交流等特征引入鱼群算法,使鱼群行为模式扩充至追尾、聚群、记忆、交流以及觅食.此外,定义参数max动态限定鱼群搜索的视野和步长.仿真分析表明,粒子群优化鱼群算法较两种基本算法而言具有更快的收敛速度和寻优精度.To solve the problem that the standard particle swarm optimization(PSO) algorithm has a low success rate when applied to the optimization of multi-dimensional and multi-extreme value functions,and the convergence rate and precision of basic artificial fish-swarm algorithm(AFSA) also need to be improved,an algorithm called PSO-FSA is proposed.This algorithm introduces the velocity inertia,remembering capacity and communicating capacity of PSO algorithm into the AFSA.As a result,the PSO-FSA has totally five kinds of behavior pattern as follows: swarming,following,remembering,communicating and searching.In addition,a parameter called max is defined to limit the visual and step of the fish swarm dynamically.The simulation analysis shows that the PSO-FSA has a better performance in convergence speed,searching precision compared to the standard PSO algorithm and the basic AFSA.

关 键 词:粒子群优化鱼群 优化算法 行为模式 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象