高鲁棒性和独特性的图像局部不变特征描述  被引量:3

Image local invariant feature description with high robustness and uniqueness

在线阅读下载全文

作  者:朱齐丹[1] 刘学 蔡成涛[1] 

机构地区:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001

出  处:《系统工程与电子技术》2013年第9期1983-1988,共6页Systems Engineering and Electronics

基  金:国家自然科学基金(61175089;61203255);中央高校基本科研业务费专项资金(HEUCF110423;HEUCFZ1210);博士后研究人员落户黑龙江科研启动资助金(LBH-Q11135)资助课题

摘  要:为了提高尺度不变特征变换(scale invariant feature transform,SIFT)算法的不变性,并降低图像中存在多个相似区域时的误匹配率,提出了一种将基于局部二进制模式的中心对称的改进局部三进制模式(center-symmetric improved local ternary patterns,CS-ILTP)描述子和全局灰度值分布(global distribution of intensity,GDI)描述子相融合的局部不变特征描述算法。通过迭代变换,使得由SIFT算法得到的初始特征点收敛到仿射不变点并得到仿射不变区域;分别提取CS-ILTP和GDI描述符,从而得到图像的局部不变特征描述。实验结果表明,所提算法具有高鲁棒性和独特性,相似区域和人工路标匹配中的正确匹配特征个数分别比SIFT算法增加了100%和86%以上。In order to improve the invariance of the scale invariant feature transform (SIFT) algorithm and reduce mismatches when multiple regions are similar, a novel algorithm for image local invariant feature descrip- tion is proposed. An improved texture feature descriptor called center-symmetric improved local ternary patterns (CS-ILTP) which is a modified version of the local binary patterns is introduced, and then it is fused with the global distribution of intensity (GDI) as the local feature descriptor in the SIFT. Through iterative transforma- tion, the initial feature point derived from the SIFT converges to affine invariant point and affine invariant region is extracted. Then the image local feature descriptor is obtained by extracting the CS-ILTP and GDI, respective- ly. The matching experiments show that the proposed algorithm has high robustness and uniqueness. Compared with the SIFT, the number of correct matching feature points in similar regions matching and artificial land marks matching has increased more than 100 ~ and by 86 ~, respectively.

关 键 词:局部不变特征 仿射不变 尺度不变特征变换算法 局部二进制模式描述子 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象