检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学航空科学与工程学院,北京100191 [2]中国空间技术研究院北京100094
出 处:《北京航空航天大学学报》2013年第8期1031-1036,共6页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家自然科学基金资助项目(10832004);凡舟基金资助项目(20110502)
摘 要:将太阳-地球-火星-飞行器组成的四体问题分解成由太阳-地球-飞行器和太阳-火星-飞行器两个共面圆形限制性三体问题,设计日地系L2点与日火系L1点Lyapunov轨道之间的转移轨道,该转移轨道可以作为探测火星时的低能中间转移轨道.采用Richardson三阶近似解作为初始值,运用微分修正方法分别得到两个不同三体系统下拉格朗日点的精确Lyapunov轨道.基于Lyapunov轨道不变流形以及微分修正方法,设计了日地系L2点与日火系L1点间的转移轨道.将所得结果与基于Halo轨道不变流形设计的转移轨道进行了对比.结论表明:利用Lyapunov轨道不变形设计探火中间转移轨道相较于利用Halo轨道不变流形设计探火中间转移轨道在能量消耗以及飞行时间上都存在优势.The transfer trajectory bwtween L2 in the sun-earth system and L1 in the sun-mars system design using invariant manifold of the restricted three body problem is studied. Considering mars ,earth and sun in the same plane, the four body problem of sun-mars-earth-spacecraft was divided into two three body prob- lems, that were the three body problems of sun-earth-spacecraft and sun-mars-spacecraft. A Lyapunov orbit of Lagrange liberation point was designed with different correction method and Richardson three-order approxima- tion solution as initial conditions. The transfer trajectory between Lyapunov orbit's invariant manifold of the two different restricted three body problems was designed with different correction method and the results was com- pared with the transfer trajectory between Halo orbit's invariant manifold of the two different restricted three body problems. The simulation shows that transfer trajectory design using the invariant manifold of Lyapunov orbit cost lower energy and shorter time of flight.
关 键 词:三体问题 Lyapunov轨道 微分修正 不变流形
分 类 号:V412.4[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200