检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学仪器科学与光电工程学院,北京100191
出 处:《北京航空航天大学学报》2013年第8期1117-1121,共5页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家自然科学基金资助项目(60802044)
摘 要:从零件三维点云中提取棱边等线特征所对应的点云是零件模型重构的关键,也是点云数据处理的基本操作.基于曲率的线特征点云提取方法易受点云初始姿态以及曲率估计方法的影响,曲面拟合及曲率估计误差较大.提出了一种基于点云姿态标准化的线特征点云提取方法:首先计算点云主方向并将其同z轴对准实现点云姿态的标准化,然后进行曲面拟合并以最大主曲率绝对值作为曲率估计值,最后对曲率值取阈值提取出线特征点云.用不同类型的点云数据进行了实验,结果表明所提方法有较高的提取效率和良好的适用性.Extracting the point cloud corresponding to the edges from point cloud of a part is a basic work in the part 3D reconstruction, also a key point of point cloud processing. The commonly used curvature based LFPC(line feature point cloud) extraction approach may have large errors in curve surface fitting and curva- ture estimation due to the arbitrary attitude of original point cloud and the way of curvature estimation. An atti- tude normalization based LFPC extraction approach is proposed. First the attitude normalization is accom- plished by adjust the principle direction of the point cloud to the z axis, then, after the curve surface fitting, the main curvature with the maximal absolute value is treated as curvature, finally, the LFPC is obtained by applying a curvature threshold. Experiments on different models show that the proposed approach has better efficiency and is adaptive to different kinds of models.
关 键 词:线特征点云提取 点云数据处理 姿态标准化 曲率估计
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229