基于梯度响应面模型的优化设计  被引量:8

Gradient-based response surface approximations for design optimization

在线阅读下载全文

作  者:罗佳奇[1] 刘锋[1,2] 

机构地区:[1]北京大学工学院,北京100871 [2]加州大学Irvine分校机械与宇航工程系,ca926973975

出  处:《物理学报》2013年第19期11-19,共9页Acta Physica Sinica

基  金:国家自然科学基金(批准号:51206003;51376009);中国博士后科学基金(批准号:2012M510267;2013T60035)资助的课题~~

摘  要:本文主要研究一种梯度响应面模型及其在气动优化设计中的应用.目前应用广泛的多项式响应面模型是连续可导的,采用梯度信息构造完全二阶多项式响应面模型,所需样本数与设计参数个数呈线性关系.首先通过改进实验设计方法,快速生成满足精度要求的样本并确定梯度响应面模型.随后通过函数实验验证梯度响应面模型的精度,及该模型在多极值函数最值搜索中的有效性.最后由伴随方法快速求解气动优化设计目标函数的梯度信息,并开展基于梯度响应面模型和复合形法的叶片压力反设计和效率优化设计.结果表明:基于梯度响应面模型的优化方法在全局最优及提高优化效率两方面均有出色表现,基于该优化方法的气动优化设计能够显著改善叶片的气动性能.This paper presents a gradient-based response surface (GBRS) model and its applications to the aerodynamic design optimization. Since the widely used polynomial response surface model is continuous and differentiable, the gradients of the original response can be involved in constructing the quadratic polynomial response surface model. For the quadratic GBRS model, the number of the required samples depends linearly, instead of quadratically on the number of design parameters. Firstly, the samples are determined through the modified design of experiment with shortened sampling time to construct the GBRS model. Then function experiments are performed to evaluate the accuracy of GBRS model and its effectiveness in searching for the global minimum. Finally the gradients for constructing the GBRS model are calculated by the adjoint method and then an inverse design and an optimization design for improving the efficiency of a cascade are performed based on the GBRS model and the complex method. Results demonstrate that the optimization method based on the GBRS model is feasible and effective for obtaining the global optimum with high optimization efficiency;and the aerodynamic performance of the cascade can be significantly improved.

关 键 词:气动优化设计 响应面模型 伴随方法 复合形法 

分 类 号:V221[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象