机构地区:[1]Key laboratory of Dairy Science of Education Ministry, Northeast Agricultural University
出 处:《Journal of Northeast Agricultural University(English Edition)》2013年第3期31-39,共9页东北农业大学学报(英文版)
基 金:Supported by Major State Basic Research Development Program of China(973 Program,2011CB100804)
摘 要:Prolactin (PRL) is a versatile signaling molecule and regulates a variety of physiological processes, including mammary gland growth and differentiation and the synthesis of milk proteins. While PRL is known to be necessary for high levels of milk protein expression, the mechanism by which the synthesis of milk proteins is stimulated at the transcript level is less known. A major modification in the transcript level is protein phosphorylation. To gain additional insights into the molecular mechanisms at the transcript level underlying PRL action on the dairy cow mammary epithelial cells (DCMECs), nuclear phosphoproteins whose expression distinguishes proliferating regulated by PRL in DCMECs were identified. A phosphoprotein-enriched fraction from nuclear proteins was obtained by affinity chromatography, and a two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization time of matrix-assisted laser desorption/ionization/time of flight mass spectrometry (MALDI-TOF MS) were used to identify the changes of nuclear phosphoproteins in DCMECs treated with prolactin. Seven proteins displaying~〉2-fold difference in abundance upon PRL treatment in DCMECs were identified by MALDI-TOF MS. The protein-GARS (GlyRS), which belonged to the class-II aminoacyl-tRNA synthetase family, played a global role in the milk protein synthesis. SERPINH1 (Heat shock protein 47), which was the first heat shock protein found to be a member of the serpin superfamily, regulated physiologic functions, such as complement activation, programmed cell death, and inflammatory processes. PRDX3, which belonged to a family of antioxidant enzymes, played an important role in scavenging intracellular reactive oxygen species (ROS). ACTR1A, belonged to the actin family, which was associated with transport of p53 to the nucleus. Annexin A2, a Ca2+-dependent phospholipid-binding protein, maintained the viability and cell cycle regulation of DCMECs. PSMB2 and PSMD10, which belonged to ubiquitin-protProlactin (PRL) is a versatile signaling molecule and regulates a variety of physiological processes, including mammary gland growth and differentiation and the synthesis of milk proteins. While PRL is known to be necessary for high levels of milk protein expression, the mechanism by which the synthesis of milk proteins is stimulated at the transcript level is less known. A major modification in the transcript level is protein phosphorylation. To gain additional insights into the molecular mechanisms at the transcript level underlying PRL action on the dairy cow mammary epithelial cells (DCMECs), nuclear phosphoproteins whose expression distinguishes proliferating regulated by PRL in DCMECs were identified. A phosphoprotein-enriched fraction from nuclear proteins was obtained by affinity chromatography, and a two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization time of matrix-assisted laser desorption/ionization/time of flight mass spectrometry (MALDI-TOF MS) were used to identify the changes of nuclear phosphoproteins in DCMECs treated with prolactin. Seven proteins displaying~〉2-fold difference in abundance upon PRL treatment in DCMECs were identified by MALDI-TOF MS. The protein-GARS (GlyRS), which belonged to the class-II aminoacyl-tRNA synthetase family, played a global role in the milk protein synthesis. SERPINH1 (Heat shock protein 47), which was the first heat shock protein found to be a member of the serpin superfamily, regulated physiologic functions, such as complement activation, programmed cell death, and inflammatory processes. PRDX3, which belonged to a family of antioxidant enzymes, played an important role in scavenging intracellular reactive oxygen species (ROS). ACTR1A, belonged to the actin family, which was associated with transport of p53 to the nucleus. Annexin A2, a Ca2+-dependent phospholipid-binding protein, maintained the viability and cell cycle regulation of DCMECs. PSMB2 and PSMD10, which belonged to ubiquitin-prot
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...