检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《空间科学学报》2000年第4期310-317,共8页Chinese Journal of Space Science
基 金:电子科学院军事电子预研基金资助项目!(DJ7.3.3.1)
摘 要:提出了利用人工神经网络技术预测电离层临界频率月中值的方案.在利用人工神经网络技术研究电离层月中值隔月变化规律的基础上,考虑足够的周年和黑子周期变化的数据训练网络,使 f0F2月中值预测值与实测数据比较平均误差为 0.34MHz,预测精度有了较大改进.最后采用分形学的基本理论得到电离层 f0F2月中值的分数维为 3,选用 3个输入量,分别预测高、低年 f0F2月中值,与实测数据比较平均误差为 0.3MHz.A method to predict the monthly mean Values of f0F2 is presented in this paper. The analysis results of monthly values of f0F2 indicate that the characteristic of this ionospheric parameter change with different month and different year. Based on it, the f0F2 monthly mean value is predicted by taking sufficient data of many yeas into account and improved the predicting method. Compared with the conserved data, the average error is less than 0.34MHz. Then, the fraction characteristic of ionosphere has been set forth by using the theory of fraction and the fraction dimension of the f0F2 monthly mean value has been acquired. Based on it, 3 parameters are selected to predict the f0F2 monthly mean value for different year, thus, the predicted technology is improved further. Compared with the conserved data, the average error is less than 0.3 MHz.
关 键 词:月中值 人工神经网络 电离层 临界频率 F0F2
分 类 号:P352[天文地球—空间物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222