检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安阳师范学院,河南安阳455000 [2]电子科技大学计算机科学与工程学院四,川成都610054
出 处:《计算机应用与软件》2013年第10期133-135,共3页Computer Applications and Software
基 金:河南省科技厅基础与前沿研究项目(112300410129);河南省教育厅自然科学研究计划项目(2011B520001)
摘 要:针对网络入侵检测中的高维数据处理问题,提出基于半监督降维技术和BP神经网络的入侵检测方法,该方法主要有两个优点:实时性更高;训练样本标记工作量更小。对半监督降维技术背后的数学原理进行解释,并论述其在网络入侵检测中应用的适用性。对比实验表明:在少量标记样本和大量未标记样本的支持下,半监督降维技术能够在降低维数的同时保持入侵检测性能,从而大幅降低入侵检测的训练和检测时间。To solve the problem of high-dimensional data processing in network intrusion detection, we propose an intrusion detection method which is based on semi-supervised dimensionality reduction and BP neural networks. It has two advantages mainly:higher real-time performance and lower cost in training sample labelling. The mathematical principle of semi-supervised dimensionality reduction is analysed in the paper. We also discuss its adaptability in network intrusion detection. Contrastive experiment demonstrates that with the support of very few labelled samples and abundant unlabeled samples, the semi-supervised dimensionality reduction can maintain the intrusion detection performance while reducing the dimensionality, therefore it greatly reduces the training and detection times of intrusion detection.
关 键 词:半监督 降维 网络入侵检测 BP神经网络 机器学习
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.164.81