基于C4.5的决策树改进算法研究  被引量:1

在线阅读下载全文

作  者:徐东风 

机构地区:[1]中国广核集团有限公司信息技术中心,广东深圳518031

出  处:《软件导刊》2013年第10期61-63,共3页Software Guide

摘  要:对海量数据的处理能力是数据挖掘最关注的问题。决策树作为一种分类器,是数据挖掘中用到的一种基本方法之一。基于C4.5的决策树改进算法,是在一些典型的决策树分类算法的基础上提出的,基本思想是在建树过程中,用属性依赖度替代信息增益率来确定划分条件属性的顺序。该算法借鉴Med Gen算法的阈值设定方法,在简化决策树剪枝和优化过程的同时,可优化C4.5算法中使用信息熵率的时间复杂度,避免了使用信息熵带来的不当划分。简述了该改进算法的执行过程,证明了算法的正确性。

关 键 词:数据挖掘 决策树 分类规则 属性依赖性度量 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象