协同多目标攻击的混合蛙跳融合蚁群算法研究  被引量:1

Target assignment in BVR air combat based on fusion of shuffled frog leaping and ant colony algorithms

在线阅读下载全文

作  者:孔凡光[1] 何建华[1] 唐奎[1] 

机构地区:[1]西北工业大学电子信息学院,西安710129

出  处:《计算机工程与应用》2013年第20期240-243,246,共5页Computer Engineering and Applications

摘  要:针对未来超视距条件下的多机协同空战,提出了一种基于混合蛙跳融合蚁群算法的目标分配方法。以目标威胁评估值为准则建立空战决策模型,根据空战决策特点对青蛙粒子进行特殊编码处理,在混合蛙跳算法局部搜索过程中加入自适应差分扰动机制、在蚁群算法中引入变异算子以减少算法搜索时间。融合算法利用混合蛙跳算法快速的全局搜索能力生成初始优化解群,利用蚁群算法具有正反馈的特点求精确解,利用Matlab仿真。仿真结果表明该方法能够快速有效地给出合理的目标分配方案。Based on the problem of target assignment in BVR(Beyond Visual Range) air combat, a Shuffled Frog Leaping Algo rithm (SFLA) and Ant Colony Algorithm (ACA) fusion is presented. A model of decisionmaking in BVR is built up by taking target threat evaluation as the criterion. According to the characteristic of BVR, a special coding process for frog is presented. An improved SFLA based on mutation idea in Differential Evolution (DE) is proposed, and the aberrance operator for ACA isembedded to reduce the search time. Since shuffled frog leaping algorithm has the capability of taking a global searching rapidly and ant colony algorithm has the positive feedback feature, the fusion algorithms use the SFLA to build optimized group at its initial stage, and then use ACA to search the exact answer at the later stage. With Matlab, simulations are implemented. The simu lation results show that this method can give a reasonable target allocation plan effectively.

关 键 词:威胁评估 超视距 目标分配 混合蛙跳算法 蚁群算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象