检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2013年第20期240-243,246,共5页Computer Engineering and Applications
摘 要:针对未来超视距条件下的多机协同空战,提出了一种基于混合蛙跳融合蚁群算法的目标分配方法。以目标威胁评估值为准则建立空战决策模型,根据空战决策特点对青蛙粒子进行特殊编码处理,在混合蛙跳算法局部搜索过程中加入自适应差分扰动机制、在蚁群算法中引入变异算子以减少算法搜索时间。融合算法利用混合蛙跳算法快速的全局搜索能力生成初始优化解群,利用蚁群算法具有正反馈的特点求精确解,利用Matlab仿真。仿真结果表明该方法能够快速有效地给出合理的目标分配方案。Based on the problem of target assignment in BVR(Beyond Visual Range) air combat, a Shuffled Frog Leaping Algo rithm (SFLA) and Ant Colony Algorithm (ACA) fusion is presented. A model of decisionmaking in BVR is built up by taking target threat evaluation as the criterion. According to the characteristic of BVR, a special coding process for frog is presented. An improved SFLA based on mutation idea in Differential Evolution (DE) is proposed, and the aberrance operator for ACA isembedded to reduce the search time. Since shuffled frog leaping algorithm has the capability of taking a global searching rapidly and ant colony algorithm has the positive feedback feature, the fusion algorithms use the SFLA to build optimized group at its initial stage, and then use ACA to search the exact answer at the later stage. With Matlab, simulations are implemented. The simu lation results show that this method can give a reasonable target allocation plan effectively.
关 键 词:威胁评估 超视距 目标分配 混合蛙跳算法 蚁群算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.190.49