Creation method for bi-level positive airway pressure based on pressure and flow feedback  

基于压力和流量双反馈的双水平气道建立方法(英文)

在线阅读下载全文

作  者:戴敏[1] 王健[1] 张志胜[1] 高霄霄[1] 

机构地区:[1]东南大学机械工程学院,南京211189

出  处:《Journal of Southeast University(English Edition)》2013年第3期270-275,共6页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China(No.51275090);the Science and Technology Support Program of Jiangsu Province(No.BE2011608);the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)

摘  要:An airway pressure and flow data acquisition system is developed to investigate the approach to building the bi-level positive airway pressure BiPAP in a ventilator.A number of experiments under different breathing situations and states are conducted and the experimental data are recorded.According to the data from these experiments the variation characteristics of the pressure and flow are analyzed using Matlab. The data analysis results show that the pressure increases while the flow decreases in the expiratory phase contrarily the pressure decreases while the flow increases in the inspiratory phase during the apnea state both the pressure and the flow remain unchanged. According to the above variation characteristics of breath a feedback-based method for creating bi-level positive airway pressure is proposed. Experiments are implemented to verify the BiPAP model. Results demonstrate that the proposed method works effectively in following respiration and caters well to most polypnea and apnea events.为了研究呼吸机中双水平气道的建立方法,搭建了一个呼吸机气道内压力和流量采集系统,对呼吸时气道内压力和流量进行试验并记录试验数据.根据试验数据,运用Matlab统计分析了呼吸过程中气道内压力和流量的变化特征.数据分析表明:在呼气相,气道内的压力增加而流量减少;在吸气相,气道内的压力减少而流量增加;在呼吸暂停状态,气道内的压力和流量都保持稳定不变的状态.根据上述呼吸特征提出一种基于压力和流量双反馈的双水平气道建立方法.通过实验对双水平模型进行了验证.研究结果表明,所提出的方法对呼吸相的跟随具有很高的精度,对呼吸急促和呼吸暂停等呼吸事件有很强的适应性.

关 键 词:VENTILATOR bi-level positive airway pressure PRESSURE FLOW 

分 类 号:TP216[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象