检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Marek BALCERZAK Kazimierz MUSIAL
机构地区:[1]Institute of Mathematics,Lodz University of Technology,ul.Wolczańska 215,93-005 Lodz,Poland [2]Institute of Mathematics,University of Wroclaw,Pl.Grunwaldzki 2/4,50-384 Wroclaw,Poland
出 处:《Acta Mathematica Sinica,English Series》2013年第11期2027-2036,共10页数学学报(英文版)
基 金:Supported by the Polish Ministry of Science and Higher Education(Grant Nos.N N201 414939 for M.Balcerzak,N N201 416139 for K.Musial)
摘 要:Let (Ω,∑,μ) be a complete probability space and let X be a Banach space. We introduce the notion of scalar equi-convergence in measure which being applied to sequences of Pettis integrable functions generates a new convergence theorem. We Mso obtain a Vituli type Z-convergence theorem for Pettis integrals where Z is an ideal on N. Keywords Convergence theorems for integrals, Pettis integral, scalar equi-convergence in measure, Z-convergenceLet (Ω,∑,μ) be a complete probability space and let X be a Banach space. We introduce the notion of scalar equi-convergence in measure which being applied to sequences of Pettis integrable functions generates a new convergence theorem. We Mso obtain a Vituli type Z-convergence theorem for Pettis integrals where Z is an ideal on N. Keywords Convergence theorems for integrals, Pettis integral, scalar equi-convergence in measure, Z-convergence
关 键 词:Convergence theorems for integrals Pettis integral scalar equi-convergence in measure I-CONVERGENCE 28A20 28B05 40A10 40A30 46G10
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.249.33