Vitali Type Convergence Theorems for Banach Space Valued Integrals  

Vitali Type Convergence Theorems for Banach Space Valued Integrals

在线阅读下载全文

作  者:Marek BALCERZAK Kazimierz MUSIAL 

机构地区:[1]Institute of Mathematics,Lodz University of Technology,ul.Wolczańska 215,93-005 Lodz,Poland [2]Institute of Mathematics,University of Wroclaw,Pl.Grunwaldzki 2/4,50-384 Wroclaw,Poland

出  处:《Acta Mathematica Sinica,English Series》2013年第11期2027-2036,共10页数学学报(英文版)

基  金:Supported by the Polish Ministry of Science and Higher Education(Grant Nos.N N201 414939 for M.Balcerzak,N N201 416139 for K.Musial)

摘  要:Let (Ω,∑,μ) be a complete probability space and let X be a Banach space. We introduce the notion of scalar equi-convergence in measure which being applied to sequences of Pettis integrable functions generates a new convergence theorem. We Mso obtain a Vituli type Z-convergence theorem for Pettis integrals where Z is an ideal on N. Keywords Convergence theorems for integrals, Pettis integral, scalar equi-convergence in measure, Z-convergenceLet (Ω,∑,μ) be a complete probability space and let X be a Banach space. We introduce the notion of scalar equi-convergence in measure which being applied to sequences of Pettis integrable functions generates a new convergence theorem. We Mso obtain a Vituli type Z-convergence theorem for Pettis integrals where Z is an ideal on N. Keywords Convergence theorems for integrals, Pettis integral, scalar equi-convergence in measure, Z-convergence

关 键 词:Convergence theorems for integrals Pettis integral scalar equi-convergence in measure I-CONVERGENCE 28A20 28B05 40A10 40A30 46G10 

分 类 号:O177.2[理学—数学] O172.2[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象