基于UVE-GA变量优选的山茶油可见/近红外光谱掺假鉴别  被引量:21

Adulteration discrimination of oil-tea camellia seed oil by Vis /NIR spectra and UVE-GA method

在线阅读下载全文

作  者:孙通[1] 胡田[1] 许文丽[1] 刘木华[1] 

机构地区:[1]江西农业大学生物光电技术及应用重点实验室,南昌330045

出  处:《中国油脂》2013年第10期75-79,共5页China Oils and Fats

基  金:国家自然科学基金项目(31271612);江西省教育厅科学研究基金(GJJ13254);江西农业大学科学研究基金(QN201105)

摘  要:摘要:利用可见/近红外光谱结合无信息变量消除一遗传算法(UVE—GA)变量选择方法对山茶油和掺杂低比例菜籽油(1%~10%)的山茶油进行鉴别分类,并应用线性判别分析(LDA)方法建立分类模型。结果表明:UVE—GA是一种有效的波长变量选择方法,能简化分类模型和提高分类模型精度;UVE—GA—LDA分类模型适用于掺杂2%以上菜籽油的山茶油鉴别分类,其分类正确率为100%;对掺杂1%菜籽油的山茶油鉴别分类正确率有待提高,其分类正确率仅为50%。Pure oil-tea camellia seed oil and oil- tea camellia seed oils adulterated with 1% -10% of rapeseed oils were discriminated and classified by visible/near infrared (Vis/NIPt) spectra combined with uninformative variable elimination -genetic algorithm (UVE -GA) , and classification model was devel- oped by linear discriminant analysis (LDA). The results indicated that UVE - GA was an efficient wave length variable selection method, and the classification model could be simplified and improved by UVE -GA. UVE -GA -LDA classification model was suitable for discriminating oil -tea camellia seed oil adulterated with more than 2% of rapeseed oil, and the correction rate of classification was 100% , while the correction rate of classification for oil - tea camellia seed oil adulterated with 1% of rapeseed oil was only 50% , which need to be improved.

关 键 词:可见 近红外光谱 UVE—GA 掺假鉴别 山茶油 

分 类 号:TS227[轻工技术与工程—粮食、油脂及植物蛋白工程] O657.33[轻工技术与工程—食品科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象