基于改进Mean Shift和SURF的目标跟踪  被引量:3

Object tracking based on improved Mean Shift and SURF

在线阅读下载全文

作  者:包旭[1] 杜凯[2] 田浩[2] 

机构地区:[1]淮阴工学院交通工程学院,江苏淮安223003 [2]长安大学电子与控制工程学院,西安710064

出  处:《计算机工程与应用》2013年第21期133-137,共5页Computer Engineering and Applications

基  金:江苏省高校自然科学基金资助项目(No.12KJD510004);淮安市科技支撑计划(工业)资助项目(No.HAG2011047)

摘  要:传统颜色直方图的Mean Shif(tMS)算法只考虑了目标颜色的统计信息,不包含目标的空间信息,当目标颜色与背景颜色相近或目标对象发生光照变化时,容易导致不准确跟踪或跟踪丢失。针对该问题,提出了一种融合改进MS和SURF的跟踪算法。改进的MS算法根据目标对象的最新外接矩形尺寸,确定对象的分块方法,根据各块的Bhattacharyya系数值,确定各块的权重系数,获得初步的跟踪结果;采用SURF特征匹配和校正的方法对其初步跟踪结果进行调整;采用线性加权的方法融合改进的MS和SURF跟踪结果,得出最终的跟踪结果。实验表明,提出的融合改进MS和SURF的跟踪算法,比传统的MS算法和固定分块的MS算法都具有更好的跟踪性能。Traditional color histogram Mean Shift (MS) algorithm only considers object' s color statistical information, and ignores object' s space information, so when the object color is close to the background color, or the object' s illumination changes, the tradi- tional MS algorithm easily causes object' s tracking inaccurately or lost. Aiming at this issue, a new tracking algorithm which fuses improved MS and SURF is proposed. The improved MS algorithm gets the preliminary tracking results, which determines block method by the size of the lastest enclosing rectangle and determines their weight coefficient by the Bhattacharyya coefficient of each block. After obtaining the tracking result with MS, this algorithm utilizes SURF to refine it. This algorithm uses linear weighted method to fuse the improved MS' s tracking results and SURF' s. Experimental results show that the new method which fuses improved MS and SURF is better than the traditional MS algorithm and fixed block MS algorithm in tracking performance.

关 键 词:目标跟踪 Mean Shift 快速鲁棒特征(SURF) 分块颜色直方图 BHATTACHARYYA系数 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象